Skip to content

Preliminary

Reference

Mechanics Lecture Notes Part III: Foundations of Continuum Mechanics, pa.kelly@auckland.ac.nz.

Website

Tensors

A tensor of order zero is simply another name for a scalar \(\alpha\).

A first-order tensor is simply another name for a vector \(\pmb{u}\).

We use uppercase bold-face Latin letters to denote second order tensor.

A second-order tensor \(\pmb{T}\) may be defined as an operator that acts on a vector \(\pmb{u}\) generating another vector \(\pmb{v}\), such that

\[ \pmb{T}(\pmb{u})=\pmb{v} \]

which is a linear operator.

  • dyad(tensor product)

the tensor product of two vectors \(\pmb{u}\) and \(\pmb{v}\)

\[ \pmb{u}\otimes \pmb{v} \]

is defined by

\[ (\pmb{u}\otimes \pmb{v} ) \pmb{w} = \pmb{u}(\pmb{v}\cdot \pmb{w}) \]

Properties

(i)

\[ (\pmb{u}\otimes \pmb{v})(\pmb{w}\otimes \pmb{x})=(\pmb{v}\cdot\pmb{w})(\pmb{u}\otimes \pmb{x}) \]

cause

\[ \begin{align*} (\pmb{u}\otimes \pmb{v})(\pmb{w}\otimes \pmb{x})\pmb{y}&=(\pmb{u}\otimes \pmb{v})(\pmb{x}\cdot\pmb{y})\pmb{w}\\ &=(\pmb{x}\cdot\pmb{y})(\pmb{u}\otimes \pmb{v})\pmb{w}\\ &=(\pmb{x}\cdot\pmb{y})(\pmb{v}\cdot\pmb{w})\pmb{u}\\ &=(\pmb{v}\cdot\pmb{w})(\pmb{x}\cdot\pmb{y})\pmb{u}\\ &=(\pmb{v}\cdot\pmb{w})(\pmb{u}\otimes \pmb{x})\pmb{y} \end{align*} \]

(ii)

\[ \pmb{u}(\pmb{v}\otimes \pmb{w})=(\pmb{u}\cdot \pmb{v})\pmb{w} \]

cause

\[ \begin{align*} (\pmb{y}\otimes \pmb{u})(\pmb{v}\otimes \pmb{w})&=(\pmb{u}\cdot \pmb{v})(\pmb{y}\otimes \pmb{w})\\ &=\pmb{y} \otimes [(\pmb{u}\cdot \pmb{v})\pmb{w}] \end{align*} \]

Some example

  • Projection Tensor \((\pmb{e}\otimes \pmb{e})\)

So

\[ (\pmb{e}\otimes \pmb{e})\pmb{u} = (\pmb{e}\cdot \pmb{u})\pmb{e} \]

is the vector projection of \(\pmb{u}\) on \(\pmb{e}\), denoted by \(\pmb{P}\).

A dyadic is a linear combination of dyads (with scalar coefficients).

In the following discussion, we can treat \(\pmb{T}\) as a matrix.

Cartesian Tensors

A second order tensor and the the vector it operates on can be described in terms of Cartesian components.

Example

  • Identity tensor/(or unit tensor).
\[ \pmb{I}=\sum_{i=1}^d\pmb{e}_i\otimes \pmb{e}_i \]

cause it follows

\[ \begin{align*} \pmb{I} \pmb{u}&=\sum_{i=1}^d(\pmb{e}_i\otimes \pmb{e}_i) \pmb{u}\\ &=\sum_{i=1}^d(\pmb{e}_i \cdot \pmb{u})\pmb{e}_i \\ &=\sum_{i=1}^d u_i\pmb{e}_i \\ &=\pmb{u} \end{align*} \]

Or identity tensor can be written as

\[ \pmb{I} = \sum_{i,j=1}^d\delta_{ij}(\pmb{e}_i\otimes \pmb{e}_j) \]

Second order tensor as a Dyadic

Every second order tensor can always be written as a dyadic involving the Cartesian base vectors \(\pmb{e}_i\), that is, if we denote

\[ \pmb{E}_i=\pmb{T}\left(\pmb{e}_i\right) \]

then

\[ \pmb{T}= \sum_{i=1}^d \left(\pmb{E}_i\otimes \pmb{e}_i\right) \]
\[ \begin{align*} \pmb{b}&=\pmb{T}(\pmb{a})\\ &=\pmb{T}\left(\sum_{i=1}^d a_i\pmb{e}_i\right)\\ &=\sum_{i=1}^d a_i \pmb{T}(\pmb{e}_i)\\ \end{align*} \]

Denote \(\pmb{T}(\pmb{e}_i)\) to be \(\pmb{E}_i\), then

\[ \begin{align*} \pmb{b}&=\sum_{i=1}^d a_i \pmb{E}_i\\ &=\sum_{i=1}^d (\pmb{a}\cdot \pmb{e}_i )\pmb{E}_i\\ &=\sum_{i=1}^d (\pmb{E}_i\otimes \pmb{e}_i) \pmb{a} \end{align*} \]

So

\[ \pmb{T}= \sum_{i=1}^d (\pmb{E}_i\otimes \pmb{e}_i) \]

If we write \(\pmb{E}_i\) with base vectors like

\[ \pmb{E}_i=\sum_{j=1}^d E_{ij}\pmb{e}_j, \quad i=1,\cdots, d \]

Then

\[ \begin{align*} (\pmb{E}_i\otimes \pmb{e}_i)&=\left(\sum_{j=1}^d E_{ij}\pmb{e}_j\right)\otimes \pmb{e}_i\\ &=\sum_{j=1}^d E_{ij} (\pmb{e}_j\otimes \pmb{e}_i), \quad i=1,\cdots, d \end{align*} \]

Thus

\[ \pmb{T}=\sum_{i=1}^d\sum_{j=1}^d E_{ij} (\pmb{e}_j\otimes \pmb{e}_i) \]

Introduce 9 scalars \(T_{ij}=E_{ji}\), then

\[ \begin{align*} \pmb{T}&=\sum_{i=1}^d\sum_{j=1}^d T_{ji} (\pmb{e}_j\otimes \pmb{e}_i)\\ &=\sum_{j=1}^d\sum_{i=1}^d T_{ji} (\pmb{e}_j\otimes \pmb{e}_i) \quad \text{switch summation turn}\\ &=\sum_{i=1}^d\sum_{j=1}^d T_{ij} (\pmb{e}_i\otimes \pmb{e}_j)\quad \text{switch $i$ and $j$} \end{align*} \]

We can see that 9 dyads \(\{\pmb{e}_i\otimes \pmb{e}_j\}_{i,j=1}^3\) forms a basis for the space of second order tensors.

Recall that

\[ \begin{align*} T_{ij}&=E_{ji}\\ &=\pmb{E}_j \cdot \pmb{e}_i \\ &=T(\pmb{e}_j) \cdot (\pmb{e}_i)\\ &=(\pmb{e}_i) \cdot T(\pmb{e}_j)\\ \end{align*} \]

So we can get the component of a tensor by the above way.

Cauchy Stress Tensor

The traction vector, the limiting value of the ratio of force over area, that is,

\[ \pmb{t}^{\pmb{n}}=\lim_{\Delta_s\rightarrow 0}\frac{\Delta F}{\Delta S} \]

where \(\pmb{n}\) denotes normal vector to the surface.

The stress \(\pmb{\sigma}\), a second order tensor which maps \(\pmb{n}\) onto \(\pmb{t}\)

\[ \pmb{t}=\pmb{\sigma}\pmb{n} \]

If we consider a coordinate system with base vectors \(\pmb{e}_i\), then \(\pmb{\sigma}=\sum\limits_{i,j=1}^d(\sigma_{ij}\pmb{e}_i \otimes \pmb{e}_j)\)

\[ \pmb{\sigma}=(\sigma_{ij}) \]

So

\[ t_i \pmb{e_i} = \sum_{j=1}^3\sigma_{ij}n_{j} \pmb{e}_i \]

For example,

\[ \pmb{\sigma}\pmb{e}_j=\sum_{i=1}^3\sigma_{ij}\pmb{e}_i \]

which denotes the summation of the \(j\)th column of matrix \(\pmb{\sigma}\).

So the components \(\sigma_{11}, \sigma_{21}, \sigma_{31}\) of the stress tensor are the three components of the traction vector which acts on the plane with normal \(\pmb{e}_1\).

Hamilton Operator

First we want to introduce the operator

\[ \nabla=\pmb{i}\frac{\partial }{\partial x}+\pmb{j}\frac{\partial }{\partial y}+\pmb{k}\frac{\partial }{\partial z} \]

then

\[ \nabla f= \pmb{i}\frac{\partial f}{\partial x}+\pmb{j}\frac{\partial f}{\partial y}+\pmb{k}\frac{\partial f}{\partial z}=\text{grad} f \]

we also have inner product

\[ \begin{align*} \nabla\cdot \pmb{a}&=\left(\pmb{i}\frac{\partial }{\partial x}+\pmb{j}\frac{\partial }{\partial y}+\pmb{k}\frac{\partial }{\partial z}\right)\cdot (P\pmb{i}+Q\pmb{j}+R\pmb{k})\\ &=\frac{\partial P}{\partial x}+\frac{\partial Q} {\partial y}+\frac{\partial R}{\partial z}\\ &=\text{div} \pmb{a} \end{align*} \]

and cross product

\[ \begin{align*} \nabla\times \pmb{a}&=\left(\pmb{i}\frac{\partial }{\partial x}+\pmb{j}\frac{\partial }{\partial y}+\pmb{k}\frac{\partial }{\partial z}\right)\times (P\pmb{i}+Q\pmb{j}+R\pmb{k})\\ &=\left|\begin{array}{ccc} \pmb{i}&\pmb{j}&\pmb{k}\\ \displaystyle \frac{\partial }{\partial x}&\displaystyle \frac{\partial }{\partial y} & \displaystyle \frac{\partial }{\partial z}\\ P & Q & R\\ \end{array} \right|\\ &=\left( \frac{\partial R}{\partial y}- \frac{\partial Q}{\partial z}\right)\pmb{i}+\left( \frac{\partial R}{\partial x}- \frac{\partial P}{\partial z}\right)\pmb{j}+\left( \frac{\partial Q}{\partial x}- \frac{\partial P}{\partial y}\right)\pmb{k}\\ &=\text{rot} \pmb{a} \end{align*} \]

Then Gauss Formula can be expressed by

\[ \iint_{\partial\Omega}\pmb{a}d\pmb{S}=\iiint_{\Omega}\nabla\cdot \pmb{a}dV \]

Stokes Formula can be expressed by

\[ \int_{\partial \Sigma}\pmb{a}d\pmb{s}=\iint_{\Sigma}(\nabla\times \pmb{a})\cdot d\pmb{S} \]