Skip to content

Numerical Analysis

Reference

Numerical analysis, Richard L. Burden, J. Douglas Faires

误差 | Preliminary: Errors

If a real number \(x\) is denoted as \(0.d_1d_2d_3\cdots \times 10^{n}\), then

  • Truncation(截断) Error

is induced when

\[ \hat{x}=0.d_1d_2d_3\cdots d_k \times 10^{n} \]

for some definite \(k<\infty\)

  • Roundoff(舍入) Error

is induced when

\[ \hat{x}=0. \delta_1 \delta_2 \delta_3 \cdots \delta_k \times 10^{n} \]

for some definite \(k<\infty\)

where \(\delta_k >d_k\) if \(d_{k+1}>=5\).

t significant digits

The number \(p^*\) is said to approximate p to \(t\) significant digits(or figures) if \(t\) is the largest nonnegative integer for which the relative error

\[ e = \frac{\Delta p}{p}=\frac{\|p-p^*\|}{\|p\|}<5\times 10^{-t} \]

where \(p^*\) is the approximate number of the exact number \(p\).

  • for Chopping:
\[ \begin{align*} e &= \left|\frac{0.d_{k+1}d_{k+2}\cdots}{0.d_1d_2\cdots}\right| \times 10^{-k} \\ &\leq \frac{1}{0.1} \times 10^{-k} \quad \text{"=" for } d_{k+1}d_{k+2}\cdots\rightarrow\overline{9}\text{ and }d_{1}d_{2}\cdots\rightarrow 0 \\ &=10^{-k+1} \end{align*} \]
  • for rounding:
\[ \begin{align*} e &\leq \frac{0.5}{0.1} \times 10^{-k} \quad \text{"=" for } d_{k+1}d_{k+2}\cdots\rightarrow 5\overline{0}\text{ and }d_{1}d_{2}\cdots\rightarrow 0 \\ &=0.5\times 10^{-k+1} \end{align*} \]

数值代数(矩阵计算) | Matrix Calculation

数值逼近 | Numerical Approximation

微分方程数值解 | Numerical Solution of Differential Equations