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1. Orthogonal Complements

Theorem(Theorem for null space and range of 𝑇 ∗). Suppose 𝑇 ∈ ℒ︀(𝑉 , 𝑊), then

(i) 𝑁𝑇 ∗ = (𝑅𝑇)⟂.

(ii) 𝑅𝑇 ∗ = (𝑁𝑇)⟂.

Proof：

∎

2. Singular value decomposition

For a linear map 𝑇 ∈ ℒ︀(𝑉 , 𝑊), we could decompose it as we have for self-adjoint operator or normal 

operator.

Recall the important Riesz representation theorem in inner product space.

Theorem(Riesz representation theorem). Assume 𝑉  is finite-dimensional and 𝜑 is a linear functional on 𝑉 , then 

there exists a unique vector 𝑣 ∈ 𝑉  such that

𝜑(𝑢) = ⟨𝑣, 𝑢⟩, ∀𝑢 ∈ 𝑉 . (1)
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Proof：

∎

In functional analysis, we have actually a similar result for infinite-dimensional spaces.

The following lemma of 𝑇 ∗𝑇  is necessary.

Theorem(Lemma: Properties of 𝑇 ∗
𝑇 ). Suppose 𝑇 ∈ ℒ︀(𝑉 , 𝑊).

(i) 𝑇 ∗𝑇  is a self-adjoint operator on 𝑉 . We could also check 𝕋∗ is a self-adjoint operator on 𝑊 .

(ii) 𝑁𝑇 ∗𝑇 = 𝑁𝑇 .

(iii) 𝑅𝑇 ∗𝑇 = 𝑅𝑇 ∗.

(iv) dimension. Dim 𝑅𝑇 = Dim 𝑅𝑇 ∗ = Dim 𝑅𝑇 ∗𝑇 .

Proof： (i) by definition.

⟨𝑇 ∗𝑇𝑣, 𝑤⟩ = ⟨𝑇𝑣, 𝑇𝑤⟩ = ⟨𝑣, 𝑇 ∗𝑇𝑤⟩ ⇒ 𝑇 ∗𝑇 = (𝑇 ∗𝑇 )∗. (2)

(ii) 𝑁𝑇 ⊂ 𝑁𝑇 ∗𝑇  is apparent. Assume 𝑣 ∈ 𝑁𝑇 ∗𝑇 , 𝑇 ∗𝑇𝑣 = 0, so ⟨𝑣, 𝑇 ∗𝑇𝑣⟩ = 0, so ⟨𝑇 𝑣, 𝑇 𝑣⟩ = |𝑇𝑣|2 = 0, which means 𝑇𝑣 = 0.

(iii) 𝑅𝑇 ∗𝑇 ⊂ 𝑅𝑇 ∗ is apparent. For another direction, we use (ii) 𝑅𝑇 ∗𝑇 = (𝑁𝑇 ∗𝑇 )⟂ = (𝑁𝑇)⟂ = 𝑅𝑇 ∗.
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(iv) Use fundamental theorem of linear maps.

∎

Definition(Definition of singular value). Assume a linear operator 𝑇 ∈ ℒ︀(𝑉 , 𝑊), the singular values of 𝑇  are 

defined as the nonnegative square roots of the eigenvalues of 𝑇 ∗𝑇 , listed in decreasing order.

Theorem((SVD) Singular value decomposition). Assume a linear operator 𝑇 ∈ ℒ︀(𝑉 , 𝑊), with its positive singular 

values 𝑠1, …, 𝑠𝑟. Then there exists orthonormal lists 𝑒1, …, 𝑒𝑟 ⊂ 𝑉 , 𝑓1, …, 𝑓𝑟 ⊂ 𝑊 , such that

𝑇𝑣 = ∑
𝑟

𝑘=1
𝑠𝑘⟨𝑣, 𝑒𝑘⟩𝑓𝑘. (3)

Proof： Here we denote that 𝑉  and 𝑊  is finite-dimensional. And the proof is constructive. This method also gives info about the 

eigenvectors construction.

Let 𝑠1, …, 𝑠𝑛 to be the singular value of 𝑇 (Dim 𝑉 = 𝑛), where 𝑠{𝑟+1}, …, 𝑠𝑛 are zero singular values.

Apply spectral theorem to 𝑇 ∗𝑇  and there exists orthonormal basis 𝑒1, …, 𝑒𝑛 ⊂ 𝑉 , such that

𝑇 ∗𝑇𝑒𝑘 = 𝑠2
𝑘𝑒𝑘, 𝑘 = 1, …, 𝑛. (4)

Define 𝑓𝑘 = 𝑇𝑒𝑘
𝑠𝑘

 for 𝑘 = 1, …, 𝑟.
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this is actually orthonormal basis in 𝑊 . This is also inspired by 𝑇 = 𝑊Σ𝑉 𝑇 , so 𝑇𝑉 = 𝑊Σ, so 𝑇𝑉 Σ−1 = 𝑊 , which shows a 

relationship of basis from 𝑉  to 𝑊  space.

Prove the proposition by expressing 𝑣 in the constructed orthonormal basis

𝑇𝑣 = 𝑇(∑
𝑛

𝑘=1
⟨𝑣, 𝑒𝑘⟩𝑒𝑘)

= ∑
𝑛

𝑘=1
⟨𝑣, 𝑒𝑘⟩𝑇 𝑒𝑘

= ∑
𝑟

𝑘=1
⟨𝑣, 𝑒𝑘⟩𝑠𝑘𝑓𝑘

(5)

for 𝑘 ≥ 𝑟, 𝑇𝑒𝑘 = 0 because 𝑇 ∗𝑇𝑒𝑘 = 0 ⋅ 𝑒𝑘 and Property of self-adjoint 𝑇 ∗𝑇  (ii).

We could also check that the matrix with respect to basis {𝑒𝑘}1≤𝑘≤𝑟 and {𝑓𝑘}1≤𝑘≤𝑟 which should be extended.

Note we have {𝑒𝑘}1≤𝑘≤𝑛, and from the above proof we have 𝑇𝑒𝑘 = 𝑠𝑘𝑓𝑘 for 𝑘 ≤ 𝑟 and 0 for 𝑘 > 𝑟. We shall extend {𝑓𝑘}1≤𝑘≤𝑟 to 

{𝑓𝑘}1≤𝑘≤𝑚(Dim 𝑊 = 𝑚) by utilizing 𝑁𝑇 ∗. This is because we want to solve 𝑅(𝑇 )⟂, which equals 𝑁𝑇 ∗ by Theorem for null space 

and range of 𝑇 ∗. (Readers should double check the dimension of 𝑁𝑇 ∗, which is 𝑚 − 𝑟, for Dim 𝑅𝑇 = 𝑟.)

∎
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Theorem(Matrix version of SVD, a compact SVD form). Assume 𝐴 is an 𝑚-by-𝑛 matrix of rank 𝑟 ≥ 1. Then 

there exists an 𝑚-by-𝑟 matrix 𝑊  with orthogonal columns, an 𝑟-by-𝑟 diagonal matrix Σ with positive numbers on 

the diagonal, and an 𝑛-by-𝑟 matrix 𝑉  with orthonormal columns such that

𝐴 = 𝑊Σ𝑉 ∗. (6)

Proof： Let 𝑇 : 𝔽𝑛 → 𝔽𝑚 whose matrix with respect to the standard basis equals 𝐴. From the above proof of the SVD theorem, we 

have Dim 𝑅𝑇 = 𝑟 and

𝑇𝑣 = ∑
𝑟

𝑘=1
𝑠𝑘⟨𝑣, 𝑒𝑘⟩𝑓𝑘. (7)

we make use of the above structure. Let

𝑊  to be the 𝑚-by-𝑟 matrix whose columns are 𝑓1, …, 𝑓𝑟,

Σ to be the 𝑟-by-𝑟 diagonal matrix Σ with entries 𝑠1, …, 𝑠𝑟,

𝑉  to be the 𝑛-by-𝑟 matrix whose columns are 𝑒1, …, 𝑒𝑟.

Choose 𝑢𝑘, a standard base of 𝔽𝑚, then apply this matrix

(𝐴𝑉 − 𝑊Σ)𝑢𝑘 = 𝐴𝑒𝑘 − 𝑊𝑠𝑘𝑢𝑘 = 𝑠𝑘𝑓𝑘 − 𝑠𝑘𝑓𝑘 = 0. (8)

so 𝐴𝑉 = 𝑊Σ, multiply both sides by 𝑉 ∗ and we have 𝐴 = 𝑊Σ𝑉 ∗. But we have to be careful.
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Here actually 𝑉 𝑉 ∗ = 𝐼  does not hold absolutely. We have to argue as follows. If 𝑘 ≤ 𝑟, 𝑉 ∗𝑒𝑘 = 𝑢𝑘, so 𝑉 𝑉 ∗𝑒𝑘 = 𝑒𝑘. Thus 

𝐴𝑉 𝑉 ∗𝑣 = 𝐴𝑣 for all 𝑣 ∈ span(𝑒1, …, 𝑒𝑚). For 𝑣 ∈ span(𝑒1, …, 𝑒𝑚)⟂
, we have 𝐴𝑣 = 0 and 𝑉 ∗𝑣 = 0, so we also have 𝐴𝑉 𝑉 ∗𝑣 =

𝐴𝑣 = 0.

∎

Proof： Another version.

Denote 𝑆 = diag(𝑠1, …, 𝑠𝑟), Σ = (𝑆
0

0
0)𝑛×𝑛

, 𝑉1 = (𝑒1, …, 𝑒𝑟), 𝑉2 = (𝑒{𝑟+1}, …, 𝑒𝑛) where the orthonormal basis in 𝑉2 is with 

respect to eigenvalue 0. Notice

𝐴∗𝐴𝑉1 = 𝑆2𝑉1 = 𝑉1𝑆2

𝑉 ∗
1 𝐴∗𝐴𝑉1 = 𝑆2

⇒ 𝑆−1𝑉 ∗
1 𝐴∗𝐴𝑉1𝑆−1 = 𝐼𝑟.

(9)

define 𝑊1 = 𝐴𝑉1𝑆−1, we have 𝑊 ∗
1 𝑊1 = 𝐼𝑟. As for 𝑉2, we have 𝐴∗𝐴𝑉2 = 𝑉202 = 0, So 𝑉 ∗

2 𝐴∗𝐴𝑉2 = 0, 𝐴𝑉2 = 0.

Choose 𝑊2 to be an orthogonal complement of 𝑊1, which is actually calculated from 𝑁𝐴∗, 𝐴∗𝑊2 = 0. So let 𝑊 = (𝑊1, 𝑊2), we 

have
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𝑊𝑇 𝐴𝑉 = (𝑊𝑇
1 𝐴𝑉1

𝑊𝑇
2 𝐴𝑉1

𝑊𝑇
1 𝐴𝑉2

𝑊𝑇
2 𝐴𝑉2

)

= (𝑊𝑇
1 𝐴𝑉1

𝑊𝑇
2 𝐴𝑉1

0
0
) by 𝐴𝑉2 = 0

= (𝑊𝑇
1 𝑊1𝑆

𝑊𝑇
2 𝑊1𝑆

0
0
)

= (𝑆
0

0
0)

(10)

∎

3. Principle Component Analysis

We first talk about total PCA.

Definition(Principle Component Analysis). Assume 𝑋, 𝑌 ∈ ℝ𝑛 are random vectors. A linear map 𝑇 : ℝ𝑛 → ℝ𝑛 

defined by

𝑌 = 𝑇𝑋, 𝑦𝑖 = 𝛼𝑇
𝑖 𝑋, 𝑖 = 1, …, 𝑛. (11)
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where 𝑇  has an orthonormal matrix 𝐴 = (𝛼𝑖)
𝑇

 with respect to standard basis, 𝛼𝑖 ∈ ℝ𝑛 and 𝛼𝑇
𝑖 𝛼𝑗 = 𝛿𝑖𝑗. We could 

show that there exists 𝛼1 such that after transformation, 𝑦1 has the maximum variance, which is called a principle 

component.

Firstly, let us recall that 𝝁 = (𝔼𝑥1, …, 𝔼𝑥𝑛)𝑇
 is the mean vector, and corresponding covariance matrix 

Σ = (cov(𝑥𝑖, 𝑥𝑗))𝑖𝑗
= 𝔼(𝑋 − 𝝁)(𝑋 − 𝝁)𝑇 = 𝔼𝑋𝑋𝑇 − 𝝁𝝁𝑇 .

After transformation, we have the following property by linearity of ME.

Theorem(Property of ME after Transformation). (i) 𝝁𝑦 = 𝐴𝝁, that is, 𝔼𝑦𝑖 = 𝛼𝑇
𝑖 𝝁.

(ii) Σ𝑦 = 𝐴𝑇 Σ𝐴, that is, 𝜎𝑖𝑗 = cov(𝑥𝑖, 𝑥𝑗) = 𝛼𝑇
𝑖 Σ𝛼𝑗.

Proof： We prove for (ii). By definition
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𝜎𝑖𝑗 = 𝔼(𝑦𝑖 − 𝛼𝑇
𝑖 𝝁)(𝑦𝑗 − 𝛼𝑇

𝑗 𝝁)𝑇

= 𝔼(𝛼𝑇
𝑖 𝑋 − 𝛼𝑇

𝑖 𝝁)(𝛼𝑇
𝑗 𝑋 − 𝛼𝑇

𝑗 𝝁)

= 𝔼𝛼𝑇
𝑖 (𝑋 − 𝝁)𝛼𝑇

𝑗 (𝑋 − 𝝁)

= 𝔼𝛼𝑇
𝑖 (𝑋 − 𝝁)(𝑋 − 𝝁)𝑇 𝛼𝑗 by symmetry of inner product

= 𝛼𝑇
𝑖 𝔼[(𝑋 − 𝝁)(𝑋 − 𝝁)𝑇 ]𝛼𝑗

= 𝛼𝑇
𝑖 Σ𝛼𝑗.

(12)

∎

From the above property, we could explain: we ask the matrix to be orthonormal because we want the 

covariance matrix of Y to be diagonal, i.e. 𝑦𝑖 and 𝑦𝑗 are mutually irrelevant unless 𝑖 = 𝑗.

Theorem(Theorem for principle component analysis). The maximum of variance of 𝑦1 is reached when 𝛼1 is the 

eigenvector of the maximum eigenvalue 𝜆1 of matrix Σ, and satisfies Var(𝑦1) = 𝜆1.

Proof： To maximize Var(𝑦1), is equivalently to maximize 𝛼𝑇
1 Σ𝛼1 for all possible 𝛼1 ∈ ℝ𝑛. Take derivative (gradient for 𝛼1 ∈ ℝ𝑛) 

of the corresponding Lagrangian function with condition 𝛼𝑇
1 𝛼1 = 1 and we have 2Σ𝛼1 − 2𝑙(𝛼1) = 𝜃. So to reach the maximum, 𝑙 is 

an eigenvalue of Σ, and at this time the goal function equals
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𝛼𝑇
1 Σ𝛼1 = 𝛼𝑇

1 𝑙𝛼1 = 𝑙𝛼𝑇
1 𝛼1 = 𝑙. (13)

To reach the maximum, let 𝑙 to be the maximum eigenvalue of Σ, denoted by 𝜆1, and choose a eigenvector 𝛼1 correspondingly.

∎

If we want to get 𝑘 principle components, which are mutually irrelevant, i.e. cov(𝑦𝑖, 𝑦𝑗) = 0 unless 𝑖 =
𝑗, we could have the following conclusion.

Theorem(Theorem for 𝑘 principle components analysis). The 𝑘 principle components of 𝑋 is determined by a 

transformation 𝑇  defined by

𝑦𝑖 = 𝛼𝑇
𝑖 𝑋, 𝑖 = 1, …, 𝑘, (14)

where 𝛼𝑖(𝑖 = 1, …, 𝑘) is the eigenvector with respect to the maximum 𝑘 eigenvalues of Σ.

Proof： We only prove for 𝑘 = 2, the other situation could be deduced by induction.

We aim to find a vector 𝛼2, such that we maximize 𝛼2Σ𝛼2, with a condition 𝛼𝑇
2 𝛼2 = 1, ⟨𝛼2, 𝛼1⟩ = 0. Take a gradient we have

2Σ𝛼2 − 2𝑙1𝛼2 − 𝑙2𝛼1 = 𝜃. (15)

apply inner product with 𝛼1, we have
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2𝜆1𝛼𝑇
2 𝛼1 − 𝑙2 = 0, Σ  is self-adjoint (16)

so 𝑙2 = 0. Then by the same logic of Theorem for principle component analysis, we also have 𝜆2 to be the second largest eigenvalue 

of Σ. Apparently 𝑙2 ≠ 𝜆1 otherwise ⟨𝛼2, 𝛼1⟩ ≠ 0.

∎

After transformation to 𝑌 ∈ ℝ𝑛, we have an amazing result of total variance of 𝑌

∑
𝑛

𝑖=1
Var(𝑦𝑖) = ∑

𝑛

𝑖=1
𝜆𝑖 = ∑

𝑛

𝑖=1
𝜎𝑖𝑖. (17)

which is given by taking the trace of

tr(Σ𝑦) = tr(𝐴𝑇 Σ𝐴) = ∑
𝑛

𝑖=1
(𝛼𝑇

𝑖 Σ𝛼𝑖) = (𝜆𝑖) (18)

and making use of Σ = 𝐴𝑇 Σ𝑦𝐴 = 𝐴Σ𝑦𝐴𝑇 .

After choosing 𝑛 principle components, we also want to find some relationship between 𝑦𝑖 and 𝑥𝑗.
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Definition(Factor of Loading). The factor of loading for 𝑦𝑖 with respect to 𝑥𝑗 is defined by

𝜌(𝑦𝑖, 𝑥𝑗) =
√𝜆𝑖𝛼𝑗𝑖
√𝜎𝑗𝑗

. (19)

where 𝛼𝑗𝑖 is the 𝑗-th component of vector 𝛼𝑖. We have to compute this element-wisely.

Proof： Just by definition.
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𝜌(𝑦𝑖, 𝑥𝑗) =
cov(𝑦𝑖, 𝑥𝑗)

√𝜆𝑖𝜎𝑗𝑗

=
cov(𝛼𝑇

𝑖 𝑋, 𝑒𝑇
𝑗 𝑋)

√𝜆𝑖𝜎𝑗𝑗

=
𝛼𝑇

𝑖 cov(𝑋, 𝑋)𝑒𝑗

√𝜆𝑖𝜎𝑗𝑗

=
𝑒𝑇

𝑗 Σ𝛼𝑖

√𝜆𝑖𝜎𝑗𝑗

=
𝜆𝑖𝑒𝑇

𝑗 𝛼𝑖

√𝜆𝑖𝜎𝑗𝑗

=
√𝜆𝑖𝛼𝑗𝑖
√𝜎𝑗𝑗

.

(20)

∎

Theorem(Properties of factor of loading). (i) Sum over original variable.
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∑
𝑛

𝑗=1
𝜎𝑗𝑗𝜌2(𝑦𝑖, 𝑥𝑗) = 𝜆𝑖. (21)

(ii) Sum over all principle components

∑
𝑛

𝑖=1
𝜌2(𝑦𝑖, 𝑥𝑗) = 1. (22)

Proof： We give proof for (ii) using outer product formula.

Since Σ = 𝐴Σ𝑦𝐴𝑇 = ∑𝑛
𝑖=1 𝜆𝑖𝛼𝑖𝛼𝑇

𝑖 , so

𝜎𝑗𝑗 = ∑
𝑛

𝑖=1
𝜆𝑖𝛼2

𝑗𝑖. (23)

∎

3.1. Normalized version

Usually different random variables have distinct values. We have to normalize them if we want to 

analyse them together.
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𝑥∗
𝑖 = 𝑥𝑖 − 𝔼𝑥𝑖

√Var(𝑥𝑖)
, 𝑖 = 1, …, 𝑛. (24)

So all the content above would be the same except the following changes.

Theorem(Changes applied to normalized random vectors). (i) 𝝁∗ = 𝜃 and Σ∗ = 𝑅, where 𝑅 is the correlation 

coefficient matrix with 𝑟𝑗𝑗 = 𝜎𝑖𝑖 = 1.

(ii) sum over variance after transformation. ∑𝑛
𝑖=1 𝜆∗

𝑖 = 𝑛.

(iii) load of factors. 𝜌(𝑦𝑖, 𝑥𝑗) = √𝜆∗
𝑖𝛼𝑗𝑖.

3.2. Truncated principle components

In practice, we usually do not choose 𝑛 principle components but rather 𝑘 ≪ 𝑛 to achieve compression 

of data.

How to choose these 𝑘 components? we based on the following criterion.

Definition(Contribution to variance). the contribution to total variance of principle component 𝑦𝑖 is defined by
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𝜂𝑖 = 𝜆𝑖
∑𝑛

𝑘=1 𝜆𝑘
(25)

usually we need to let ∑𝑘
𝑖=1 𝜂𝑖 to be larger than 70%.

3.3. Sampled PCA

In actual experiments, we have to observe independently 𝑚 times. We have to replace mean and 

covariance matrix with their empirical versions. Assume 𝑋1, …, 𝑋𝑚 are 𝑚 mutually independent 

random vectors (samples in ℝ𝑛), then the unbiased estimates of mean and variance are

𝝁 ≈ 𝑋 = ∑
𝑚

𝑘=1
𝑋𝑘, 𝜎𝑗𝑗 = 1

𝑚 − 1
∑
𝑚

𝑘=1
(𝑋𝑘 − 𝑋)

2
. (26)

So we have its empirical covariance matrix 𝑆 = 1
𝑚−1 ∑𝑚

𝑘=1(𝑋𝑘 − 𝑋)(𝑋𝑘 − 𝑋)
𝑇

. Tackle this matrix 

with the same method we used in PCA, then we are done.
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For actual calculation, we usually let 𝑋𝑘 = 𝑋𝑘−𝑋√𝑠𝑘𝑘
 for each 𝑘 = 1, …, 𝑚, and solve singular values of 

𝑋′ = (𝑋1, …, 𝑋𝑚)𝑛×𝑚 as 𝑠1 > … > 𝑠𝑛, then 𝜆𝑖 = 𝑠2
𝑖  for 𝑖 = 1, …, 𝑛. And 𝑉 = 𝐴 and 𝑌 = 𝑉 𝑇 𝑋. If 

we choose 𝑘 principle components, then choose 𝑘 columns of 𝑉  as eigenvectors.
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2 Multilinear Algebra



2 Multilinear Algebra

1. Bilinear forms

Definition(Definition of bilinear form). A bilinear form on 𝑉  is a function 𝛽 : 𝑉 × 𝑉 → 𝔽, such that

𝑣 ↦ 𝛽(𝑣, 𝑢), 𝑣 ↦ 𝛽(𝑢, 𝑣) (27)

are both linear functionals on 𝑉  for each 𝑢 ∈ 𝑉 .

Example. (i) 𝔽 = ℝ, inner product on 𝑉 , i.e. (𝑢, 𝑣) ↦ ⟨𝑢, 𝑣⟩ is a bilinear form.

Note that for 𝔽 = ℝ, a bilinear form differs from inner product in that inner product requires symmetry 

(𝛽(𝑢, 𝑣) = 𝛽(𝑣, 𝑢)) and positive definiteness (𝛽(𝑣, 𝑣) > 0 for all 𝑣 ∈ 𝑉 − {𝜃}), whereas these 

properties are not required for a bilinear form.

Example. Show that a bilinear form 𝛽 on 𝑉 , is also a linear map on 𝑉 × 𝑉 , then 𝛽 = 𝜃.

For simplicity, we denote the set of all the bilinear forms on 𝑉  by 𝑉 (2).

Definition(Matrix form for a bilinear form).

Theorem(composition of a bilinear form and an operator). Suppose 𝛽 is a bilinear form on 𝑉  and 𝑇  is a linear 

operator on 𝑉 . Define two supplementary bilinear forms
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𝛼(𝑢, 𝑣) = ⟨𝑢, 𝑇 𝑣⟩, 𝜌(𝑢, 𝑣) = ⟨𝑇𝑢, 𝑣⟩. (28)

Let 𝑒1, …, 𝑒𝑛 be a basis of 𝑉 , then

ℳ︀(𝛼) = ℳ︀(𝛽)ℳ︀(𝑇 ), ℳ︀(𝜌) = ℳ︀(𝑇)𝑡ℳ︀(𝛽). (29)

Theorem(change-of-basis formula).

2. Symmetric bilinear form

Definition(Definition of Symmetric bilinear form). A bilinear form 𝜌 ∈ 𝑉 (2) is called symmetric if

𝜌(𝑢, 𝑤) = 𝜌(𝑤, 𝑢) (30)

for all 𝑢, 𝑤 ∈ 𝑉 . The set of symmetric bilinear form on 𝑉  is denoted by 𝑉 (2)
sym .

Example. (i) Suppose 𝑉  is a real inner product space, then

𝜌(𝑢, 𝑤) = ⟨𝑢, 𝑇𝑤⟩ (31)

is symmetric bilinear form iff 𝑇  is self-adjoint.

Definition(Alternating bilinear form(交错双线性型)). A bilinear form 𝛼 on 𝑉  is call alternating, if
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𝛼(𝑣, 𝑣) = 0, ∀𝑣 ∈ 𝑉 . (32)

The set of all alternating bilinear form is denoted by 𝑉 (2)
alt .

Example. (i) Suppose 𝑛 ≥ 3 and then 𝛼 : 𝔽𝑛 × 𝔽𝑛 → 𝔽 defined by

𝛼((𝑥1, …, 𝑥𝑛), (𝑦1, …, 𝑦𝑛)) = 𝑥1𝑦2 − 𝑥2𝑦1 + 𝑥1𝑦3 − 𝑦1𝑥3 (33)

is alternating.

Theorem(Characterization of alternating bilinear form). A bilinear form 𝛼 on 𝑉  is alternating, iff

𝛼(𝑢, 𝑤) = −𝛼(𝑤, 𝑢), ∀𝑢, 𝑤 ∈ 𝑉 . (34)

Proof：

∎

Now the following theorem describes the composition of 𝑉 (2).

Theorem(Theorem). The set 𝑉 (2)
sym  and 𝑉 (2)

alt  are subsets of 𝑉 (2). Furthermore,

𝑉 (2) = 𝑉 (2)
alt ⊕ 𝑉 (2)

sym . (35)
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Proof：

Show that 𝑉 (2)
sym  and 𝑉 (2)

alt  are subsets of 𝑉 (2) by definition.

Show that 𝑉 (2) = 𝑉 (2)
sym + 𝑉 (2)

alt . Suppose 𝛽 ∈ 𝑉 (2), then define 𝜌, 𝛼 ∈ 𝑉 (2) by

𝜌(𝑢, 𝑤) = 1
2
(𝛽(𝑢, 𝑤) + 𝛽(𝑤, 𝑢)), 𝛼(𝑢, 𝑤) = 1

2
(𝛽(𝑢, 𝑤) − 𝛽(𝑤, 𝑢)) (36)

so 𝜌 ∈ 𝑉 (2)
sym  and 𝛼 ∈ 𝑉 (2)

alt , and 𝛽 = 𝜌 + 𝛼.

Show that 𝑉 (2)
sym ∩ 𝑉 (2)

alt = {0}. That is, let 𝛽 ∈ 𝑉 (2)
sym ∩ 𝑉 (2)

alt , then

𝛽(𝑢, 𝑤) = 𝛽(𝑤, 𝑢) = −𝛽(𝑢, 𝑤) ⇒ 𝛽(𝑢, 𝑤) = 0, ∀𝑢, 𝑤 ∈ 𝑉 . (37)

So 𝛽 = 0.

∎

3. Quadratic form

Definition(Quadratic form induced by bilinear form). Suppose 𝛽 is a bilinear form on 𝑉 , define a function 𝑞𝛽 :
𝑉 → 𝔽 by 𝑞𝛽(𝑣) = 𝛽(𝑣, 𝑣).

A function 𝑞 : 𝑉 → 𝔽 is called a quadratic form on 𝑉  if there exists a bilinear form 𝛽 such that 𝑞 = 𝑞𝛽.
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Example. Quadratic form.

(i) For 𝛽((𝑥1, 𝑥2, 𝑥3), (𝑥1, 𝑥2, 𝑥3)) = 𝑥1𝑦1 − 4𝑥1𝑦2 + 8𝑥1𝑦3 − 3𝑥3𝑦3, 𝑞𝛽 is given by

𝑞𝛽((𝑥1, 𝑥2, 𝑥3)) = 𝑥2
1 − 4𝑥1𝑥2 + 8𝑥1𝑥3 − 3𝑥2

3. (38)

Theorem(Quadratic form on 𝔽𝑛). Suppose 𝑛 is an positive integer and 𝑞 is a function from 𝔽𝑛 to 𝔽. Then 𝑞 is a 

quadratic form on 𝑉  iff there exist numbers 𝐴𝑗,𝑘 for 𝑗, 𝑘 = 1, …, 𝑛 such that

𝑞(𝑥1, …, 𝑥𝑛) = ∑
𝑛

𝑘=1
∑

𝑛

𝑗=1
𝐴𝑗,𝑘𝑥𝑗𝑥𝑘, ∀(𝑥1, …, 𝑥𝑛) ∈ 𝔽𝑛. (39)

Proof：

Necessary. By definition.

Sufficient. Given a quadratic form, define a corresponding bilinear form.

∎

Theorem(characterization of quadratic forms). Suppose 𝑞 : 𝑉 → 𝔽 is a function. TFAE.

(i) 𝑞 is a quadratic form.
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(ii) There exists a unique symmetric bilinear form 𝜌 on 𝑉  such that 𝑞 = 𝑞𝜌.

(iii) 𝑞(𝜆𝑣) = 𝜆2𝑞(𝑣) for all 𝜆 ∈ 𝔽 and all 𝑣 ∈ 𝑉 . Furthermore, the function

(𝑢, 𝑤) ↦ 𝑞(𝑢 + 𝑤) − 𝑞(𝑢) − 𝑞(𝑤) (40)

is a symmetric bilinear form on 𝑉 .

(iv) 𝑞(2𝑣) = 4𝑞(𝑣) for all 𝑣 ∈ 𝑉 . Furthermore, the function

(𝑢, 𝑤) ↦ 𝑞(𝑢 + 𝑤) − 𝑞(𝑢) − 𝑞(𝑤) (41)

is a symmetric bilinear form on 𝑉 .

Proof： (i) ⇒ (ii). By decomposition of 𝑉 (2).

(ii) ⇒ (iii). By utilizing the bilinear form.

(iii) ⇒ (iv) is apparent.

(iv) ⇒ (i). Just define

𝜌(𝑢, 𝑤) = 𝑞(𝑢 + 𝑤) − 𝑞(𝑢) − 𝑞(𝑤)
2

(42)

which is a symmetric bilinear form. Then the corresponding 𝑞𝜌 satisfies
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𝑞𝜌(𝑣) = 𝜌(𝑣, 𝑣) = 𝑞(𝑣 + 𝑣) − 𝑞(𝑣) − 𝑞(𝑣)
2

= 𝑞(𝑣). (43)

which means 𝑞 is a quadratic form.

∎

Theorem(diagonalization of quadratic form). Suppose 𝑞 is a quadratic form on 𝑉 .

(i) There exists a basis 𝑒1, …, 𝑒𝑛 of 𝑉  and 𝜆1, …, 𝜆𝑛 ∈ 𝔽 such that

𝑞(𝑥1𝑒1 + … + 𝑥𝑛𝑒𝑛) = 𝜆1𝑥2
1 + … + 𝜆𝑛𝑥2

𝑛, ∀𝑥1, …, 𝑥𝑛 ∈ 𝔽𝑛. (44)

(ii) If 𝔽 = ℝ and 𝑉  is an inner product space, then the basis in (a) can be chosen to be an orthogonal basis of 𝑉 .



Thank You For Listening!
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