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1. Orthogonal Complements

Theorem(Theorem for null space and range of T'*). Suppose T' € £(V, W), then
(i) NT* = (RT)*.
(i) RT* = (NT)*.

Proof:

2. Singular value decomposition

For a linear map T' € £(V, W), we could decompose it as we have for self-adjoint operator or normal
operator.

Recall the important Riesz representation theorem in inner product space.

Theorem(Riesz representation theorem). Assume V' is finite-dimensional and ¢ is a linear functional on V, then
there exists a unique vector v € V such that

o(u) = (v,u), Vu€eV. (1)
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Proof:
u

In functional analysis, we have actually a similar result for infinite-dimensional spaces.
The following lemma of 171" is necessary.
Theorem(Lemma: Properties of 7'*T"). Suppose T' € £L(V,W).
(1) T™T 1s a self-adjoint operator on V. We could also check T* is a self-adjoint operator on W'.
(i) NT*T = NT.
(i) RT*T = RT™.
(iv) dimension. Dim RT = Dim RT* = Dim RT*T.
Proof: (i) by definition.

(T*Tv,w) = (Tv, Tw) = (v, T*Tw) = T*T = (T*T)". (2)

(il) NT C NT*T is apparent. Assume v € NT*T, T*Tv = 0, so (v, T*Tv) = 0, so (T'v, Tv) = |Tv|?> = 0, which means T'v = 0.
(iii) RT*T C RT* is apparent. For another direction, we use (ii) RT*T = (N T*T)l = (NT)* = RT*.
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(iv) Use fundamental theorem of linear maps.

Definition(Definition of singular value). Assume a linear operator 7' € £(V, W), the singular values of T are
defined as the nonnegative square roots of the eigenvalues of 7T, listed in decreasing order.

Theorem((SVD) Singular value decomposition). Assume a linear operator 7' € £(V, W), with its positive singular
values sy, ..., s,.. Then there exists orthonormal lists eq, ...,e,. C V, fy, ..., f, C W, such that

r

Tv = Zsk<vaek>fk' (3)

k=1

Proof: Here we denote that V' and W is finite-dimensional. And the proof is constructive. This method also gives info about the
eigenvectors construction.

Let sq, ..., S,, to be the singular value of T'(Dim V = n), where S{r+1}s -+ Sy, are zero singular values.
@ Apply spectral theorem to 77T and there exists orthonormal basis e, ...,e,, C V, such that
T*Te, = sie,, k=1,...n. (4)

T
‘kfork=1,..,r.
Sk

@ Define f; =
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this is actually orthonormal basis in W. This is also inspired by T = WXV 7T, so TV = WX, so TVX~! = W, which shows a
relationship of basis from V to W space.

@ Prove the proposition by expressing v in the constructed orthonormal basis
Tv=T (Z(fu, ek>ek>

k=1

= zn:(v,ek>Tek (5)
k=1

T

= (v, ex) 8k fx
k=1

for k > r, Te;, = 0 because T*T'e;, = 0 - e;, and Property of self-adjoint 71" (i1).
We could also check that the matrix with respect to basis {e,, }, _, _ and {f,} _, _ which should be extended.

L<hen’ and from the above proof we have T'e,, = s, f; for kK < r and 0 for £ > r. We shall extend {fk}lgkg to

{fe} <\, (Dim W =m) by utilizing NT™. This is because we want to solve R(T)+, which equals NT* by Theorem for null space
and range of T*. (Readers should double check the dimension of NT*, which is m — r, for Dim RT = r.)

Note we have {e, }
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Theorem(Matrix version of SVD, a compact SVD form). Assume A is an m-by-n matrix of rank » > 1. Then
there exists an m-by-r matrix W with orthogonal columns, an r-by-r diagonal matrix Y with positive numbers on
the diagonal, and an n-by-r matrix V' with orthonormal columns such that

A=WSV* (6)

Proof: LetT : F® — F™ whose matrix with respect to the standard basis equals A. From the above proof of the SVD theorem, we
have Dim RT = r and

Tv = Zsk(v,ek>fk. (7)
k=1

we make use of the above structure. Let
W to be the m-by-r matrix whose columns are f;, ..., f,,
3 to be the r-by-r diagonal matrix ¥ with entries s, ..., s,.,
V to be the n-by-r matrix whose columns are e, ..., €

re

Choose uy,, a standard base of ™", then apply this matrix

so AV = WX, multiply both sides by V* and we have A = WX V™. But we have to be careful.
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Here actually VV* = I does not hold absolutely. We have to argue as follows. If £ < 7, V*e;, = uy, so VV*e, = e,. Thus

AVV*vy = Av forall v € span(ey, ..., e, ). For v € span(ey, ...,e,, )", we have Av = 0 and V*v = 0, so we also have AVV*v =
Av = 0.

Proof: Another version.

Denote S = diag(sy, ..., s,.), & = (“09 g) JVi=(eq,y.he,), Vo= (e{rﬂ}, s en> where the orthonormal basis in V; is with
nxn
respect to eigenvalue 0. Notice

A*AV, = §2V = V. 52
L S ATAVS = 1.
define W; = AV, 871, we have W;W, = I . As for V,, we have A*AV, = V,0% = 0, So V;*A*AV, = 0, AV, = 0.

Choose W, to be an orthogonal complement of W;, which is actually calculated from N A*, A*W, = 0. So let W = (W, W,), we
have
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Wi AV, Wi AV,
WTAV = ! 2
(WZTAVl WZTAV)

Wit AV
by AV, =
(WAVl) y 4k =0

WIW,S 0
WIW,S 0

~(59)

(10)

3. Principle Component Analysis
We first talk about total PCA.

Definition(Principle Component Analysis). Assume X, Y € R™ are random vectors. A linear map 7" : R* — R"
defined by

Y=TX, y,=al'X, i=1,..,n. (11)
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where 7" has an orthonormal matrix A = (ai)T with respect to standard basis, a; € R™ and aZTOzj = d,;. We could
show that there exists a;; such that after transformation, y; has the maximum variance, which is called a principle
component.

Firstly, let us recall that o = (Ex4, ..., Ewn)T 1s the mean vector, and corresponding covariance matrix

%= (cov(z;,z;)) =EX—p)(X—p)' =EXX" — pp”.
ij

After transformation, we have the following property by linearity of ME.

Theorem(Property of ME after Transformation). (i) p, = Ap, that is, By, = al .

(i) X, = ATY A, that is, 0 = cov(z;, zcj) = a?Eaj.

Proof: We prove for (ii). By definition
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:E( Yi — “)(yj_a 'u)
=E(ef X —al'p)(af X —al p)
=Ea (X — p)a] (X —p)

(12)
=Eo; (X — p)(X —pu)Te; by symmetry of inner product
= o E[(X — p)(X — )]
=alYa

|

From the above property, we could explain: we ask the matrix to be orthonormal because we want the
covariance matrix of Y to be diagonal, i.e. y; and y,; are mutually irrelevant unless ¢ = j.

Theorem(Theorem for principle component analysis). The maximum of variance of y; is reached when «; is the
eigenvector of the maximum eigenvalue A; of matrix ¥, and satisfies Var(y,) = ;.

Proof: To maximize Var(y,), is equivalently to maximize af Y, for all possible a; € R™. Take derivative (gradient for a;; € R™)

of the corresponding Lagrangian function with condition af o;; = 1 and we have 2Xa; — 2I(a;) = . So to reach the maximum, [ is

an eigenvalue of 3., and at this time the goal function equals
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al'Ya; = alla; =laTa; =1. (13)

To reach the maximum, let [ to be the maximum eigenvalue of 3, denoted by A, and choose a eigenvector o; correspondingly.

|

If we want to get k principle components, which are mutually 1rrelevant, 1.e. cov(yi, yj) = O unless 7 =
7, we could have the following conclusion.
Theorem(Theorem for k principle components analysis). The k principle components of X is determined by a
transformation 7' defined by

y, =al'X, i=1,..k, (14)
where «,; (i = 1, ..., k) is the eigenvector with respect to the maximum k eigenvalues of X,
Proof: We only prove for k = 2, the other situation could be deduced by induction.
We aim to find a vector a,, such that we maximize ay Xav,, with a condition af a, = 1, (i, ;) = 0. Take a gradient we have

apply inner product with o, we have
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2\ ot a; —1, =0, ¥ is self-adjoint (16)

so Iy = 0. Then by the same logic of Theorem for principle component analysis, we also have A, to be the second largest eigenvalue
of X. Apparently [, # A, otherwise (a5, ;) # 0.

After transformation to Y € R", we have an amazing result of total variance of Y

Zvar(yi) = Z)‘i = Zaiz" (17)
i=1 i=1 i=1

which is given by taking the trace of

tr(3,) = tr(AT3A) = ” (afXa;) = (N) (18)

i=1
and making use of ¥ = A"Y A = AX, A",

After choosing n principle components, we also want to find some relationship between y; and z .
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Definition(Factor of Loading). The factor of loading for y; with respect to z; is defined by

P(?Jia%) = — (19)

where «; 1s the j-th component of vector ;. We have to compute this element-wisely.

Proof: Just by definition.
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(20)

Theorem(Properties of factor of loading). (1) Sum over original variable.
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D730 (Ui 7;) = A (21)
j=1
(i1) Sum over all principle components

202(%,%‘) =L (22)

Proof: We give proof for (i1) using outer product formula.

Since ¥ = AX AT =" Noaf,s0

i=1"1t 7t ?

3.1. Normalized version

Usually different random variables have distinct values. We have to normalize them if we want to
analyse them together.
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_Fr.
pi= i T =1 . (24)

’ \/Var(asz—)’

So all the content above would be the same except the following changes.

Theorem(Changes applied to normalized random vectors). (1) u* = 6 and X* = R, where R is the correlation
coefficient matrix with r;; = o;; = 1.

(11) sum over variance after transformation. Z?: (A=
(iii) load of factors. p(y;, z;) = \/Aja

e/ TN

3.2. Truncated principle components

In practice, we usually do not choose n principle components but rather k£ << n to achieve compression
of data.

How to choose these k components? we based on the following criterion.

Definition(Contribution to variance). the contribution to total variance of principle component y;, is defined by
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usually we need to let Zf: , M; 1o be larger than 70%.

3.3. Sampled PCA

In actual experiments, we have to observe independently m times. We have to replace mean and
covariance matrix with their empirical versions. Assume X, ..., X, are m mutually independent
random vectors (samples in R™), then the unbiased estimates of mean and variance are

prX =3 X, ajjzﬁZ(Xk—Y)g (26)
k=1 k=1

So we have its empirical covariance matrix S = ﬁ ZZ”: ) (X p— X ) (X p— X ) . Tackle this matrix
with the same method we used in PCA, then we are done.
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For actual calculation, we usually let X, = )f/’“g for each £ = 1, ..., m, and solve singular values of
X' = (X1, Xpp) o 885; > ... > s, then \; = s2fori=1,...,n.AndV =AandY = VT X.If

m

we choose k principle components, then choose k£ columns of V' as eigenvectors.
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1. Bilinear forms

Definition(Definition of bilinear form). A bilinear form on V is a function 8 : V x V — F, such that

v B(v,u), v B(u,v) (27)
are both linear functionals on V' for each u € V.
Example. (i) F = R, inner product on V, i.e. (u, v) — (u, v) is a bilinear form.

Note that for F = R, a bilinear form differs from inner product in that inner product requires symmetry
(B(u,v) = B(v,u)) and positive definiteness (8(v,v) > 0 for all v € V — {6}), whereas these
properties are not required for a bilinear form.

Example. Show that a bilinear form 5 on V, is also a linear map on V' x V, then 8 = 0.
For simplicity, we denote the set of all the bilinear forms on V by V(2.

Definition(Matrix form for a bilinear form).

Theorem(composition of a bilinear form and an operator). Suppose (3 is a bilinear form on V' and 7' is a linear
operator on V. Define two supplementary bilinear forms
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a(u,v) = (u, Tv), p(u,v) = (Tu,v). (28)

Let ey, ..., e, be abasis of V, then

Theorem(change-of-basis formula).

2. Symmetric bilinear form

Definition(Definition of Symmetric bilinear form). A bilinear form p € V) is called symmetric if

p(u, w) = p(w, u) (30)
for all u,w € V. The set of symmetric bilinear form on V' is denoted by V;}(,?ﬁ
Example. (1) Suppose V' is a real inner product space, then

p(u, w) = (u, Tw) (31)
1s symmetric bilinear form iff 7" is self-adjoint.

Definition(Alternating bilinear form(3 4% 3 & £ &)). A bilinear form o on V is call alternating, if
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a(v,v) =0, VveV,

The set of all alternating bilinear form is denoted by Vﬁ )

Example. (i) Suppose n > 3 and then a : " x "™ — [ defined by
(@15 s Ty )5 (Y15, Un)) = T1Yp — TaYy + T1Y3 — Y1 T3 (33)
is alternating.
Theorem(Characterization of alternating bilinear form). A bilinear form o on V is alternating, iff
a(u,w) = —a(w,u), Yu,welV. (34)

Proof:

Now the following theorem describes the composition of V().

Theorem(Theorem). The set V.12 and Vlt are subsets of V(2). Furthermore,

sym

v =y e y? (35)

sym "
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Proof:
@ Show that V{2) and V ) are subsets of V) by definition.

sym

@ Show that V) = V(2) 4 V%t) Suppose 3 € V2, then define p, o € V2 by

sym

1 1
sop € Vsﬁn and o € Vlt ,andﬂ—p+oz
@ Show that ngg N Vlt = {0}. Thatis, let 8 € V] Sym N V%t ), then
Blu,w) = f(w,u) = —P(u,w) = f(u,w) =0, Yu,weV. (37)

So 5 =0.

3. Quadratic form

Definition(Quadratic form induced by bilinear form). Suppose £ is a bilinear form on V, define a function g :
V — F by gg(v) = B(v,v).

A function g : V' — F is called a quadratic form on V' if there exists a bilinear form [ such that ¢ = g,.
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Example. Quadratic form.
(i) For B((z1, x5, 3), (%1, T3, T3)) = T1Y1 — 4%, Y, + 8%1y5 — 323Y3, g is given by
q5((1, 9, T3)) = x] — 4z xy + 8z 13 — 323, (38)

Theorem(Quadratic form on [F™). Suppose n is an positive integer and q is a function from F™ to F. Then g is a
quadratic form on V' iff there exist numbers A, , for j,k = 1, ..., n such that

n n

q(zq,...,x,) = Z A pzizy, Y(Z4,...,7,) €F" (39)
k=1 j—1

Proof:
@ Necessary. By definition.

@ Sufficient. Given a quadratic form, define a corresponding bilinear form.

Theorem(characterization of quadratic forms). Suppose q : V' — F is a function. TFAE.

(1) q 1s a quadratic form.
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(ii) There exists a unique symmetric bilinear form p on V' such that ¢ = g,,.

(ii1) g(Av) = A\%q(v) for all X € IF and all v € V. Furthermore, the function
(u, w) = q(u + w) — g(u) — g(w) (40)
1s a symmetric bilinear form on V.
(iv) ¢(2v) = 4q(v) for all v € V. Furthermore, the function
(u, w) = q(u+ w) — q(u) — q(w) (41)
is a symmetric bilinear form on V.
Proof: (i) = (ii). By decomposition of V(2.
(ii) = (iii). By utilizing the bilinear form.
(i11) = (1v) 1s apparent.
(iv) = (i). Just define

q(u+w) — q(u) — q(w)
2

p(u, w) = (42)

which is a symmetric bilinear form. Then the corresponding g, satisfies
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which means ¢ is a quadratic form.

Theorem(diagonalization of quadratic form). Suppose ¢ is a quadratic form on V.

(1) There exists a basis e, ...,e,, of V and A, ..., A\, € F such that
q(xie; + ... +xe,) = A\x3+ ...+ N\, 22, Vr,,..x, €F" (44)

(1) If F = R and V is an inner product space, then the basis in (a) can be chosen to be an orthogonal basis of V.
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Thank You For Listening!
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