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1 张量代数

定义(双线性映射). 设𝑉1, 𝑉2, 𝑊是线性空间，映射𝐵 : 𝑉1 × 𝑉2 → 𝑊是双线性的，若有

(i) 第一个位置的线性. 𝐵(𝑘𝑢1 + 𝑢2, 𝑣) = 𝑘𝐵(𝑢1, 𝑣) + 𝐵(𝑢2, 𝑣), ∀𝑣 ∈ 𝑉2.

(ii) 第二个位置的线性. 𝐵(𝑢, 𝑘𝑣1 + 𝑣2) = 𝑘𝐵(𝑢, 𝑣1) + 𝐵(𝑢, 𝑣2), ∀𝑢 ∈ 𝑉1.

则称𝐵为从𝑉1 × 𝑉2到𝑊的双线性映射.

记ℒ︀(𝑉1, 𝑉2; 𝑊)为所有从𝑉1 × 𝑉2到𝑊的双线性映射的集合, 则其自然是一个线性空间，我们可以自然定义其

上面的加法和数乘, 即

(𝐵1 + 𝐵2)(𝑢, 𝑣) ≔ 𝐵1(𝑢, 𝑣) + 𝐵2(𝑢, 𝑣), (1)

(𝑘𝐵)(𝑢, 𝑣) ≔ 𝑘𝐵(𝑢, 𝑣). (2)

类似地，可以定义多重线性映射空间ℒ︀(𝑉1, ⋯, 𝑉𝑛; 𝑊).

定义(元素的张量积). 取上述的目标空间为𝑊 = ℝ, 即空间ℒ︀(𝑉1, 𝑉2; ℝ), 下面构造属于该集合的映射. ∀𝑓 ∈
𝑉 ∗

1 , 𝑔 ∈ 𝑉 ∗
2 , 定义𝑓 ⊗ 𝑔 : 𝑉1 × 𝑉2 → ℝ为

(𝑓 ⊗ 𝑔)(𝑢1, 𝑢2) ≔ 𝑓(𝑢1)𝑔(𝑢2), ∀𝑢1 ∈ 𝑉1, 𝑢2 ∈ 𝑉2. (3)

注意上述的双线性性质需要验证，从而𝑓 ⊗ 𝑔 ∈ ℒ︀(𝑉1, 𝑉2; ℝ). 这来源于泛函𝑓 , 𝑔的线性性质.
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引理(双线性). 𝑉 ∗
1 × 𝑉 ∗

2 → ℒ︀(𝑉1, 𝑉2; ℝ)的映射(𝑓, 𝑔) ↦ (𝑓 ⊗ 𝑔)是双线性的.

证明：只证第一个位置的线性. 𝑓1, 𝑓2 ∈ 𝑉 ∗
1 , 𝑔 ∈ 𝑉 ∗

2 , 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2,

[(𝑘𝑓1 + 𝑓2) ⊗ 𝑔](𝑢, 𝑣) = (𝑘𝑓1 + 𝑓2)(𝑢)𝑔(𝑣) = 𝑘𝑓1(𝑢)𝑔(𝑣) + 𝑓2(𝑢)𝑔(𝑣) = (𝑘𝑓1 ⊗ 𝑔 + 𝑓2 ⊗ 𝑔)(𝑢, 𝑣). (4)

∎

注意上述的双线性性质也来源于泛函𝑓 , 𝑔的线性性质, 这说明纯张量𝑓 ⊗ 𝑔可以被分解. 事实上，

任意张量都可以被分解，具体有下面的引理.

引理(构造性的扩张). {𝑓 ⊗ 𝑔 : 𝑓 ∈ 𝑉 ∗
1 , 𝑔 ∈ 𝑉 ∗

2 }张成了ℒ︀(𝑉1, 𝑉2; ℝ).

证明：设𝑉1的基为{𝑒𝑖}, 𝑉 ∗
1 的对偶基为{𝑤𝑖}, 取𝑉2的基为{𝑓𝑗}, 𝑉 ∗

2 的对偶基为{𝛿𝑗}. 则𝑤𝑖 ⊗ 𝛿𝑗构成了ℒ︀(𝑉1, 𝑉2; ℝ)的基. 具体可

以看出

∑
𝑖,𝑗

𝑎𝑖𝑗𝑤𝑖 ⊗ 𝛿𝑗 = 0 ⇔ ∑
𝑖,𝑗

𝑎𝑖𝑗𝑤𝑖 ⊗ 𝛿𝑗(𝑢, 𝑣) = ∑
𝑖,𝑗

𝑎𝑖𝑗𝑤𝑖(𝑢)𝛿𝑗(𝑣) = 0, ∀𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2. (5)

取𝑢 = 𝑒𝑘, 𝑣 = 𝑓𝑙, 则RHS = ∑𝑖,𝑗 𝑎𝑖𝑗𝑤𝑖(𝑒𝑘)𝛿𝑗(𝑓𝑙) = ∑𝑖,𝑗 𝑎𝑖𝑗𝛿𝑖
𝑘𝛿𝑗

𝑙 = 𝑎𝑘𝑙 = 0, ∀𝑘, 𝑙, 从而线性无关.

下面证其张成性. 取𝐵 ∈ ℒ︀(𝑉1, 𝑉2; 𝑊), 首先令𝐵(𝑒𝑖, 𝑓𝑗) = 𝑎𝑖𝑗, 下面证明𝐵 = ∑𝑖,𝑗 𝑎𝑖𝑗𝑤𝑖 ⊗ 𝛿𝑗. 首先注意到两边都是双线性映射. 

接下来同义反复证明其在基上面的作用即可，因为由双线性性质
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𝐵(𝑢, 𝑣) = 𝐵(∑
𝑖

𝑢𝑖𝑒𝑖, ∑
𝑗

𝑣𝑗𝑓𝑗) = ∑
𝑖,𝑗

𝑢𝑖𝑣𝑗𝐵(𝑒𝑖, 𝑓𝑗). (6)

∎

由上述构造性，我们得到一个推论

定理(维数等式). dim ℒ︀(𝑉1, 𝑉2; ℝ) = dim(𝑉 ∗
1 ) dim(𝑉 ∗

2 ) = dim(𝑉1) dim(𝑉2).

下面给出张量积的严格定义.

定义(集合的张量积). 称ℒ︀(𝑉 ∗
1 , 𝑉 ∗

2 ; ℝ)为𝑉1, 𝑉2的张量积，记为𝑉1 ⊗ 𝑉2. 于是我们称𝐿(𝑉1, 𝑉2; ℝ) = 𝑉 ∗
1 ⊗ 𝑉 ∗

2 .

注意，两个空间的张量积，是其对偶空间乘积上的双线性映射形成的。由之前的证明，我们有

如下的结论。

定理(张量积的基底). 取𝑉1, 𝑉2的基底分别为{𝑒𝑖}, {𝑓𝑗}, 则𝑉1 ⊗ 𝑉2的基底为{𝑒𝑖 ⊗ 𝑓𝑗}.

定理(一般双线性映射，泛性质). 设𝐵 : 𝑉1 × 𝑉2 → 𝑊是双线性映射, 则存在唯一的线性映射𝐵 : 𝑉1 ⊗ 𝑉2 → 𝑊 , 

使得复合运算成立𝐵(𝑢, 𝑣) = 𝐵(𝑢 ⊗ 𝑣)
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证明：只需在{𝑒𝑖 ⊗ 𝑓𝑗}上定义𝐵即可,并作线性延拓. 具体来说，令𝐵(𝑒𝑖 ⊗ 𝑓𝑗) = 𝐵(𝑒𝑖, 𝑓𝑗), 且对任意的𝑡 ∈ 𝑉1 ⊗ 𝑉2, 由张量积

的基底表示，𝑡 = ∑𝑖,𝑗 𝑐𝑖𝑗(𝑒𝑖 ⊗ 𝑓𝑗), 于是可以定义𝐵(𝑡) = ∑𝑖,𝑗 𝑐𝑖𝑗𝐵(𝑒𝑖 ⊗ 𝑓𝑗). 自然地，𝐵是线性的.

下面只需验证𝐵(𝑢 ⊗ 𝑣) = 𝐵(𝑢, 𝑣). 事实上, 给定𝑢 = ∑𝑖 𝑢𝑖𝑒𝑖, 𝑣 = ∑𝑗 𝑣𝑗𝑓𝑗, 则

𝐵(𝑢, 𝑣) = ∑
𝑖,𝑗

𝑢𝑖𝑣𝑗𝐵(𝑒𝑖, 𝑓𝑗) 𝐵双线性

= ∑
𝑖,𝑗

𝑢𝑖𝑣𝑗𝐵(𝑒𝑖 ⊗ 𝑓𝑗) 定义

= 𝐵(∑
𝑖,𝑗

𝑢𝑖𝑣𝑗(𝑒𝑖 ⊗ 𝑓𝑗)) 𝐵线性

= 𝐵((∑
𝑖

𝑢𝑖𝑒𝑖) ⊗ (∑
𝑗

𝑣𝑗𝑓𝑗)) 张量积的双线性性

= 𝐵(𝑢 ⊗ 𝑣) 定义

(7)

∎

引理(典则同构). (𝑉1 ⊗ 𝑉2)
∗ ≅ 𝑉 ∗

1 ⊗ 𝑉 ∗
2 .

证明：定义𝜋 : 𝑉 ∗
1 ⊗ 𝑉 ∗

2 → (𝑉1 ⊗ 𝑉2)
∗
，在纯张量𝑓 ∈ 𝑉 ∗

1 , 𝑔 ∈ 𝑉 ∗
2 上,
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𝜋(𝑓 ⊗ 𝑔)(𝑢 ⊗ 𝑣) = 𝑓(𝑢)𝑔(𝑣), ∀𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2. (8)

该映射的定义不依赖于𝑉1, 𝑉2, 𝑉 ∗
1 , 𝑉 ∗

2 的基底选择，从而是典范的. 下面需要验证该映射是良定义的. 仍然利用线性延拓方法。

也就是对于一般的线性组合形成的张量𝐵 = ∑𝑖 𝑎𝑖𝑓 𝑖 ⊗ 𝑔𝑖, 我们令

𝜋(𝐵) = 𝜋(∑
𝑖

𝑎𝑖𝑓 𝑖 ⊗ 𝑔𝑖) = ∑
𝑖

𝑎𝑖𝜋(𝑓 𝑖 ⊗ 𝑔𝑖). (9)

从而𝜋(𝐵)(𝑢 ⊗ 𝑣) = 𝜋(∑𝑖 𝑎𝑖𝑓 𝑖 ⊗ 𝑔𝑖)(𝑢 ⊗ 𝑣) = ∑𝑖 𝑎𝑖𝜋(𝑓 𝑖 ⊗ 𝑔𝑖)(𝑢 ⊗ 𝑣) = ∑𝑖 𝑎𝑖𝑓 𝑖(𝑢)𝑔𝑖(𝑣). 我们需要验证这里得到的结果与线
性组合的表示无关. 设𝐵 = ∑𝑗 𝑏𝑗𝜑𝑗 ⊗ 𝜓𝑗 = ∑𝑖 𝑎𝑖𝑓 𝑖 ⊗ 𝑔𝑖, 利用𝑉1 ⊗ 𝑉2的基底表示，𝑓 𝑖 ⊗ 𝑔𝑖 = (∑𝑙 𝑎𝑖𝑙𝑤𝑙) ⊗ (∑𝑘 𝑏𝑖𝑘𝛿𝑘) =
∑𝑘,𝑙 𝑎̃𝑖

𝑘𝑙𝑤𝑘 ⊗ 𝛿𝑙, 同理𝜑𝑗 ⊗ 𝜓𝑗 = ∑𝑘,𝑙 𝑏̂𝑗
𝑘𝑙𝑤𝑘 ⊗ 𝛿𝑙. 代入上式，比较基底系数可知∑𝑖 𝑎𝑖𝑎̃𝑖

𝑘𝑙 = ∑𝑗 𝑏𝑗𝑏̂
𝑗
𝑘𝑙, ∀𝑘, 𝑙. 于是

∑
𝑖

𝑎𝑖𝑓 𝑖(𝑢)𝑔𝑖(𝑣) = ∑
𝑘,𝑙

(∑
𝑖

𝑎𝑖𝑎̃𝑖
𝑘𝑙)𝑤𝑘(𝑢)𝛿𝑙(𝑣) = ∑

𝑘,𝑙
(∑

𝑗
𝑏𝑗𝑏̂

𝑗
𝑘𝑙)𝑤𝑘(𝑢)𝛿𝑙(𝑣) = ∑

𝑗
𝑏𝑗𝜑𝑗(𝑢)𝜓𝑗(𝑣). (10)

这样便验证了良定义性. 单满性可以通过取基底验证。

∎

之后，我们便基本上在纯张量上定义操作，一般都可以线性延拓到整个张量积空间上.
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1.多重张量积

类似地，我们可以定义多重张量积𝑉1 ⊗ ⋯ ⊗ 𝑉𝑟 ≔ ℒ︀(𝑉 ∗
1 , ⋯, 𝑉 ∗

𝑟 ; ℝ). 关于多重张量积，我们有

引理(结合律). (𝑉1 ⊗ 𝑉2) ⊗ 𝑉3 ≅ 𝑉1 ⊗ 𝑉2 ⊗ 𝑉3.

证明：直接按照定义写开左边会比较繁琐. 这里我们定义𝜋 : (𝑉1 ⊗ 𝑉2) ⊗ 𝑉3 → 𝑉1 ⊗ 𝑉2 ⊗ 𝑉3为

𝜋((𝑣1 ⊗ 𝑣2) ⊗ 𝑣3)(𝑓1, 𝑓2, 𝑓3) = 𝑓1(𝑣1)𝑓2(𝑣2)𝑓3(𝑣3), ∀𝑓𝑖 ∈ 𝑉 ∗
𝑖 , 𝑖 = 1, 2, 3. (11)

∎

下面为了对称，𝑣 ∈ 𝑉 , 𝑓 ∈ 𝑉 ∗, 我们记𝑓(𝑣) = ⟨𝑓, 𝑣⟩. 下面考虑一个有限维空间𝑉的操作. 令

𝐸𝑟
𝑠(𝑉 ) = 𝑉 ⊗ ⋯ ⊗ 𝑉⏟

𝑟个

⊗ 𝑉 ∗ ⊗ ⋯ ⊗ 𝑉 ∗⏟
𝑠个

为𝑟阶反变𝑠阶协变张量空间.

取𝑉的基{𝑒𝑖}, 𝑉 ∗的基{𝑤𝑖}, 则𝑒𝑖1
⊗ ⋯ ⊗ 𝑒𝑖𝑟

⊗ 𝑤𝑗1 ⊗ ⋯ ⊗ 𝑤𝑗𝑠为𝑇 𝑟
𝑠 (𝑉 )的基底. 事实上，𝑇 𝑟

𝑠 (𝑉 ) =

ℒ︀
(
𝑉 ∗, ⋯, 𝑉 ∗

⏟
𝑟

, 𝑉 , ⋯, 𝑉⏟
𝑠

; ℝ
)
, 即

[𝑒𝑖1
⊗ ⋯ ⊗ 𝑒𝑖𝑟

⊗ 𝑤𝑗1 ⊗ ⋯ ⊗ 𝑤𝑗𝑠](𝑓1, ⋯, 𝑓𝑟, 𝑣1, ⋯, 𝑣𝑠) = ⟨𝑒𝑖1
, 𝑓1⟩⋯⟨𝑒𝑖𝑟

, 𝑓𝑟⟩⟨𝑤𝑗1
, 𝑣1⟩⋯⟨𝑤𝑗𝑠

, 𝑣𝑠⟩.(12)
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于是对任意的𝜑 ∈ 𝑇 𝑟
𝑠 (𝑉 ), 有唯一的系数𝜑𝑖1⋯𝑖𝑟

𝑗1⋯𝑗𝑠
使得

𝜑 = ∑
𝑖1,⋯,𝑖𝑟,𝑗1,⋯,𝑗𝑠

𝜑𝑖1⋯𝑖𝑟
𝑗1⋯𝑗𝑠

(𝑒𝑖1
⊗ ⋯ ⊗ 𝑒𝑖𝑟

⊗ 𝑤𝑗1 ⊗ ⋯ ⊗ 𝑤𝑗𝑠). (13)

为了坐标变换讨论的方便，我们引入 Einstein求和约定，即当一个表达式中某个指标在上

标和下标同时出现时，表示对该指标进行求和. 例如𝑎𝑖
𝑗𝑏

𝑗
𝑘 = ∑𝑗 𝑎𝑖

𝑗𝑏
𝑗
𝑘.

例(坐标变换). (i) 基之间的坐标变换. 取𝑉的两组基{𝑒𝑖}, {𝑒𝑖}, 且满足变换关系𝑒𝑗 = 𝑎𝑖
𝑗𝑒𝑖, 记𝑏𝑖

𝑗 = [𝑎𝑖
𝑗]

−1
, 即

𝑎𝑖
𝑗𝑏

𝑗
𝑘 = 𝛿𝑖

𝑘, 𝑏𝑗
𝑘𝑎𝑖

𝑗 = 𝛿𝑖
𝑘. 于是我们有对偶基的变换关系𝑤̃𝑗 = 𝑏𝑗

𝑖𝑤𝑖. 这是因为对偶基的定义

𝑏𝑖
𝑗𝑤𝑗(𝑒𝑘) = 𝑤𝑖

𝑗𝑤𝑗(𝑎𝑙
𝑘𝑒𝑙) = 𝑏𝑖

𝑗𝑎𝑙
𝑘𝛿𝑗

𝑙 = 𝑏𝑖
𝑗𝑎

𝑗
𝑘 = 𝛿𝑖

𝑘 = 𝑤̃𝑖(𝑒𝑘). (14)

(ii) 取𝜑 ∈ 𝑇 𝑟
𝑠 (𝑉 ), 则其在两组基下的表示分别为

𝜑 = 𝜑𝑖1⋯𝑖𝑟
𝑗1⋯𝑗𝑠

(𝑒𝑖1
⊗ ⋯ ⊗ 𝑒𝑖𝑟

⊗ 𝑤𝑗1 ⊗ ⋯ ⊗ 𝑤𝑗𝑠) = 𝜑̃𝑖1⋯𝑖𝑟
𝑗1⋯𝑗𝑠

(𝑒𝑖1
⊗ ⋯ ⊗ 𝑒𝑖𝑟

⊗ 𝑤̃𝑗1 ⊗ ⋯ ⊗ 𝑤̃𝑗𝑠). (15)

将(1)中结果𝑒𝑖 = (𝑎𝑗
𝑖)

−1
𝑒𝑗 = 𝑏𝑗

𝑖𝑒𝑗, 𝑤𝑗 = (𝑏𝑗
𝑖)

−1
𝑤̃𝑖 = 𝑎𝑗

𝑖𝑤̃𝑖代入, 于是我们有坐标变换关系

𝜑̃𝑖1⋯𝑖𝑟
𝑗1⋯𝑗𝑠

= 𝜑𝑘1⋯𝑘𝑟
𝑙1⋯𝑙𝑠 𝑏𝑖1

𝑘1
⋯𝑏𝑖𝑟

𝑘𝑟
𝑎𝑙1

𝑗1
⋯𝑎𝑙𝑠

𝑗𝑠
. (16)



1 张量代数

上面跟随基向量𝑒𝑖, 𝑒𝑖之间的变换𝑎𝑙1
𝑗1

⋯𝑎𝑙𝑠
𝑗𝑠
中的𝑠便被称为协变(co-variate).

例(典范同构). 𝑉 ⊗ 𝑉 ∗ ≅ ℒ︀(𝑉 , 𝑉 )

证明：定义𝜑 : 𝑉 ⊗ 𝑉 ∗ ≅ ℒ︀(𝑉 , 𝑉 )为𝜑(𝑢 ⊗ 𝑓)(𝑣) = 𝑓(𝑢)𝑣, 则这样的定义不合理。 应该定义成𝜑(𝑢 ⊗ 𝑓)(𝑣) = 𝑓(𝑣)𝑢.

∎

定义(张量的缩并(contraction)). 对于给定的两个指标𝑖, 𝑗, 任取𝜑 ∈ 𝑉 𝑟
𝑠 , 定义映射𝑐𝑡𝑖,𝑗 : 𝑉 𝑟

𝑠 → 𝑉 𝑟−1
𝑠−1 为

𝑐𝑡𝑖,𝑗(𝜑) = 𝜑𝑎1⋯𝑎𝑖−1𝑒𝑎𝑖+1⋯𝑎𝑟
𝑏1⋯𝑏𝑗−1𝑒𝑏𝑗+1⋯𝑏𝑠

𝑒𝑎1
⊗ ⋯ ⊗ 𝑒𝑎𝑖

⊗ ⋯ ⊗ 𝑒𝑎𝑟
⊗ 𝑤𝑏1 ⊗ ⋯𝑤̂𝑏𝑗 ⊗ ⋯ ⊗ 𝑤𝑏𝑠 (17)

注意这里的缩并并不依赖于基底的选择.

下面我们考虑张量积𝑇𝑟 = 𝑇 0
𝑟 = 𝑉 ∗ ⊗ ⋯ ⊗ 𝑉 ∗⏟

𝑟个

≅
(
𝑉 ⊗ ⋯ ⊗ 𝑉⏟

𝑟个 )


∗

≅ ℒ︀
(



𝑉 , ⋯, 𝑉⏟
𝑟个

; ℝ
)


上的作用. 

当𝑟 = 0时，𝑇0 = ℝ; 当𝑟 = 1时，𝑇1 = 𝑉 ∗.

首先取𝑆𝑟为𝑟阶置换群，考虑𝑆𝑟在𝑇𝑟上的作用: ∀𝜎 ∈ 𝑆𝑟, ∀𝑇 ∈ 𝑇𝑟, 𝑋𝑖 ∈ 𝑉 , 令𝑇𝑟上的自同态群为

𝜎 ∘ 𝑇 (𝑋1, ⋯, 𝑋𝑟) = 𝑇(𝑋𝜎(1), ⋯, 𝑋𝜎(𝑟)). (18)
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于是𝜎 ∘ 𝑇 ∈ 𝑇𝑟.

引理(𝜎作用的性质). (i) 𝜎 : 𝑇𝑟 → 𝑇𝑟是线性的.  (ii) (𝜎 ∘ 𝜏) ∘ 𝑇 = 𝜎 ∘ (𝜏 ∘ 𝑇 )

证明：(i)

𝜎(𝑘𝑇1 + 𝑇2)(𝑋1, ⋯, 𝑋𝑟) = (𝑘𝑇1 + 𝑇2)(𝑋𝜎(1), ⋯, 𝑋𝜎(𝑟)) = 𝑘𝑇1(𝑋𝜎(1), ⋯, 𝑋𝜎(𝑟)) + 𝑇2(𝑋𝜎(1), ⋯, 𝑋𝜎(𝑟))

= 𝑘𝜎𝑇1(𝑋1, ⋯, 𝑋𝑟) + 𝜎𝑇2(𝑋1, ⋯, 𝑋𝑟)
(19)

(ii)

𝜎 ∘ (𝜏 ∘ 𝑇 )(𝑋1, ⋯, 𝑋𝑟) = 𝜏 ∘ 𝑇(𝑋𝜎(1), ⋯, 𝑋𝜎(𝑟)) = 𝑇(𝑋𝜎∘𝜏(1), ⋯, 𝑋𝜎∘𝜏(𝑟)) = (𝜎 ∘ 𝜏) ∘ 𝑇 (𝑋1, ⋯, 𝑋𝑟) (20)

∎

从而𝑆𝑟 × 𝑇𝑟 → 𝑇𝑟, (𝜎, 𝑇 ) ↦ 𝜎 ∘ 𝑇为𝑆𝑟在𝑇𝑟上的表示. 也就是每一个𝜎 ∈ 𝑆𝑟, 都对应一个自同构

𝐿𝜎 : 𝑇𝑟 → 𝑇𝑟, 记所有的𝐿𝜎组成的集合为𝐺𝐿(𝑇𝑟)，即是𝑇𝑟上所有可逆线性变换组成的群. 详细可

见抽象代数中的表述. 从而映射𝜑 : 𝑆𝑟 → 𝐺𝐿(𝑇𝑟), 定义为𝜎 ↦ 𝐿𝜎是一个群同态.

注意到sgn : 𝑆𝑟 → {±1}是群同态.

定义(对称、反对称张量). 取𝑇 ∈ 𝑇𝑟,
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(i) 若∀𝜎 ∈ 𝑆𝑟, 𝜎𝑇 = 𝑇 , 则称𝑇为对称张量.

(ii) 若∀𝜎 ∈ 𝑆𝑟, 𝜎𝑇 = sgn(𝜎)𝑇 , 则称𝑇为反对称张量.

下面给出上述两个张量的相关性质。

定义(性质). (i) 对称张量、反对称张量构成一个线性子空间.

(ii) 𝑇是反对称张量，当且仅当𝑇(𝑋1, ⋯, 𝑋𝑖, ⋯, 𝑋𝑗, ⋯, 𝑋𝑟) = −𝑇(𝑋1, ⋯, 𝑋𝑗, ⋯, 𝑋𝑖, ⋯, 𝑋𝑟).

定义(对称化算子、反对称化算子). 定义 (i) 𝑆𝑟 : 𝑇𝑟 → 𝑇𝑟为𝑆𝑟(𝑇 ) = 1
𝑟! ∑

𝜎∈𝑆𝑟

𝜎 ∘ 𝑇 ,

(ii) 𝐴𝑟 : 𝑇𝑟 → 𝑇𝑟为𝐴𝑟(𝑇 ) = 1
𝑟! ∑

𝜎∈𝑆𝑟

sgn(𝜎)𝜎 ∘ 𝑇

引理(两种算子的性质). (i) 𝑆𝑟(𝑇 )是对称张量，𝐴𝑟(𝑇 )是反对称张量.  (ii) 𝑆𝑟 ∘ 𝑆𝑟 = 𝑆𝑟, 𝐴𝑟 ∘ 𝐴𝑟 = 𝐴𝑟.

证明：(i) 根据定义代入∀𝜏 ∈ 𝑆𝑟, 𝜏 ∘ (𝑆𝑟(𝑇 )) = 𝑆𝑟(𝑇 ), 𝜏 ∘ (𝐴𝑟(𝑇 )) = sgn(𝜏)𝐴𝑟(𝑇 ).

(ii) 若𝑇是对称张量，则𝑆𝑟(𝑇 ) = 𝑇 , 从而𝑆𝑟 ∘ 𝑆𝑟(𝑇 ) = 𝑆𝑟(𝑇 ). 若𝑇是反对称张量，则𝐴𝑟(𝑇 ) = 𝑇 , 从而𝐴𝑟 ∘ 𝐴𝑟(𝑇 ) = 𝐴𝑟(𝑇 ).

∎
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我们记𝑟阶反对称张量构成的子空间为Λ𝑟(𝑉 ∗) = Im(𝐴𝑟). 于是Λ1(𝑉 ∗) = 𝑉 ∗, 由之前𝑇 0
0 (𝑉 ∗) = ℝ

的约定，我们有Λ0(𝑉 ∗) = ℝ.

定义(外积). 设𝜑 ∈ Λ𝑟(𝑉 ∗), 𝜓 ∈ Λ𝑠(𝑉 ∗), 定义𝜑 ∧ 𝜓 ∈ Λ𝑟+𝑠(𝑉 ∗), 为

𝜑 ∧ 𝜓 = (𝑟 + 𝑠)!
𝑟!𝑠!

𝐴𝑟+𝑠(𝜑 ⊗ 𝜓) = 1
𝑟!𝑠!

∑
𝜎∈𝑆𝑟

sgn(𝜎)𝜎 ∘ (𝜑 ⊗ 𝜓). (21)

引理(外积的性质). (i) 外积是双线性的.  (ii) 外积满足结合律. (𝜑 ∧ 𝜓) ∧ 𝜂 = 𝜑 ∧ (𝜓 ∧ 𝜂) 

(iii) 𝜑 ∧ 𝜓 = (−1)𝑟𝑠𝜓 ∧ 𝜑, ∀𝜑 ∈ Λ𝑟(𝑉 ∗), ∀𝜓 ∈ Λ𝑠(𝑉 ∗).

证明：(i) 直接由定义可知.

∎

定理(外积的对偶基). 取𝑉 ∗的对偶基{𝑤𝑗}𝑛
𝑗=1

, 则Λ𝑟(𝑉 ∗)的基为

{𝑤𝑖1 ∧ ⋯ ∧ 𝑤𝑖𝑟 : 1 ≤ 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑟 ≤ 𝑛}, (22)

其中𝑤𝑖1 ∧ ⋯ ∧ 𝑤𝑖𝑟 = 𝑟!𝐴𝑟(𝑤𝑖1 ⊗ ⋯ ⊗ 𝑤𝑖𝑟).

注意到𝑤𝑖1 ⊗ ⋯ ⊗ 𝑤𝑖𝑟是全空间的基底，于是∀𝜑 ∈ Λ𝑟(𝑉 ∗), 𝜑 = 𝜑𝑖1⋯𝑖𝑟
𝑤𝑖1 ⊗ ⋯ ⊗ 𝑤𝑖𝑟 , 并且有
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𝜑 = 𝐴𝑟(𝜑) = 𝜑𝑖1⋯𝑖𝑟
𝐴𝑟(𝑤𝑖1 ⊗ ⋯ ⊗ 𝑤𝑖𝑟)

= 𝜑𝑖1⋯𝑖𝑟

1
𝑟!

𝑤𝑖1 ∧ ⋯ ∧ 𝑤𝑖𝑟
(23)

由之前的引理（外积的性质）可得

𝑤𝑖1 ∧ ⋯ ∧ 𝑤𝑖𝑟 = {0, 𝑖1, ⋯,某两个相等
±𝑤𝑗1 ∧ ⋯ ∧ 𝑤𝑗𝑟 , 𝑗1, ⋯, 𝑗𝑟是𝑖1, ⋯, 𝑖𝑟 的一个重排

(24)

从而𝜑可以由上面的集合线性表示。由对偶基的性质，该集合内的元素线性无关，从而构成了
Λ𝑟(𝑉 ∗)的基底. 根据基的个数，我们有 dim(Λ𝑟(𝑉 ∗)) = (𝑛

𝑟).

2.张量丛

设𝑀是𝐶∞流形，记𝑇 𝑟
𝑠 (𝑇𝑝𝑀) = 𝑇 𝑟

𝑠,𝑝𝑀 . 当𝑝变动时，𝑇 𝑟
𝑠,𝑝𝑀形成类似于向量丛的结构，记

𝑇 𝑟
𝑠 (𝑀) = ⋃𝑝∈𝑀 𝑇 𝑟

𝑠,𝑝(𝑀). 令映射𝜋 : 𝑇 𝑟
𝑠 (𝑀) → 𝑀 , 𝜋(𝑇 𝑟

𝑠,𝑝𝑀) = 𝑝是类似的投影映射. 设其上的坐

标卡(𝑈, 𝜑; 𝑥𝑖), ∀𝑝 ∈ 𝑈 , 𝜕
𝜕𝑥𝑖是𝑇𝑝(𝑀)的自然基底，从而
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𝜕
𝜕𝑥𝑖1

⊗ ⋯ ⊗ 𝜕
𝜕𝑥𝑖𝑟

⊗ d𝑥𝑗1⋯ ⊗ d𝑥𝑗𝑠 (25)

是𝑇 𝑟
𝑠,𝑝𝑀的一族基底. 类似切丛，我们可以定义

𝜑̃𝑈 : 𝜋−1(𝑈) → 𝑈 × (ℝ𝑚 ⊗ ⋯ ⊗ ℝ𝑚⏟
𝑟

⊗ ℝ𝑚 ⊗ ⋯ ⊗ ℝ𝑚⏟
𝑠

) (26)

为∀𝑝 ∈ 𝑈 , ∀Φ ∈ 𝑇 𝑟
𝑠,𝑝𝑀 , 坐标表示为Φ = Φ𝑖1⋯𝑖𝑟

𝑗1⋯𝑗𝑠
𝜕

𝜕𝑥𝑖1 |𝑝 ⊗ ⋯ ⊗ 𝜕
𝜕𝑥𝑖𝑟 |𝑝 ⊗ d𝑥𝑗1𝑝 ⋯ ⊗ d𝑥𝑗𝑠𝑝 ,

𝜑̃𝑈(Φ) = (𝑝, Φ𝑖1⋯𝑖𝑟
𝑗1⋯𝑗𝑠

). (27)

是一个𝑚 + 𝑚𝑟+𝑠维光滑流形. 在这上面定义类似的拓扑，使得上面的𝜑̃𝑈称为同胚.

类似于向量场，我们可以有

定义(张量场). 将张量丛𝑇 𝑟
𝑠 (𝑀)的一个截面称为(𝑟, 𝑠)型张量场. 即为𝑀上每一个点𝑝指定一个𝑇 𝑟

𝑠,𝑝𝑀中的张量.
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下面也再次聚焦 0次协变的张量空间. 和张量丛定义完全类似，我们引入反称张量和外积的概念, 

定义外微分形式丛和外微分形式场.

定义(外微分形式丛). ⋀𝑟 𝑇 ∗
𝑝 (𝑀)是𝑇 ∗

𝑝 (𝑀)上𝑟阶反对称张量空间. 令⋀𝑟(𝑀) = ⋃𝑝∈𝑀 ⋀𝑟(𝑇 ∗
𝑝 𝑀), 被称为𝑟次外

形式丛. 其上面有一个自然的𝐶𝑘−1微分结构，使之成为𝑚 + (𝑚
𝑟 )维流形.

定义(外形式). ⋀𝑟(𝑀)的截面被称为𝑟 −外微分形式, 一般用符号𝑤表示，其概念和向量场𝑋对应. 记𝐴𝑟(𝑀)为
所有𝑟 −外形式的集合. 记𝐴(𝑀) = ⊕𝑚

𝑖=0 𝐴𝑚(𝑀)，其元素被称为外微分形式，𝐴(𝑀)被称为外微分形式空间. 

特别地，𝐴0(𝑀) = 𝐶∞(𝑀)，𝐴1(𝑀) = Γ(𝑇 ∗𝑀). 这里Γ表示取余切丛的截面.

定理(外形式与外积). 任意的𝑤 ∈ 𝐴𝑟(𝑀), 𝜏 ∈ 𝐴𝑠(𝑀), 令(𝑤 ∧ 𝜏)(𝑝) = 𝑤(𝑝) ∧ 𝜏(𝑝), 则𝑤 ∧ 𝜏 ∈ 𝐴𝑟+𝑠𝑀 .

证明：这里是逐点定义的，故直接继承自外积的性质.

∎

我们之前定义过𝑓 : 𝑀 → 𝑁诱导的切映射𝑓∗,𝑝 : 𝑇𝑝𝑀 → 𝑇𝑞𝑁 , 𝑞 = 𝑓(𝑝), 以及它的对偶映射𝑓∗
𝑝 :

𝑇 ∗
𝑞 𝑁 → 𝑇 ∗

𝑝 𝑀 . 下面定义整体上的𝑓∗ : 𝐴𝑠(𝑁) → 𝐴𝑠(𝑀).

定义(拉回映射). (i) 𝑠 = 0. ∀𝜃 ∈ 𝐴0(𝑁) = 𝐶∞(𝑁), 定义𝑓∗𝜃 = 𝜃 ∘ 𝑓 . 下面考虑𝑠 ≥ 1的情形.
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(ii) 𝑠 = 1. 我们利用之前的𝑓∗
𝑝在𝑀上逐点定义𝑓∗. ∀𝜃 ∈ 𝐴1(𝑁)，定义(𝑓∗𝜃)(𝑝) = 𝑓∗

𝑝(𝜃𝑓(𝑝)) ∈ 𝑇 ∗
𝑝 𝑀 . 则显然

𝑓∗𝜃 ∈ 𝐴1(𝑀). 利用𝑓∗
𝑝(𝑑𝑦𝑗|𝑓(𝑝)) = ∑𝑚

𝑖=1 𝑑𝑥𝑖
𝑝

𝜕𝑦𝑗

𝜕𝑥𝑖 |𝑝可知是光滑的.

(iii) 𝑠 ≥ 2. 我们类似地使用逐点定义. ∀𝜃 ∈ 𝐴𝑠(𝑁)，∀𝑋1, ⋯, 𝑋𝑠 ∈ 𝑇𝑝𝑀 ,

(𝑓∗𝜃)𝑝(𝑋1, ⋯, 𝑋𝑠) = 𝜃𝑓(𝑝)(𝑓∗𝑝(𝑋1), ⋯, 𝑓∗𝑝(𝑋𝑠)) (28)

特别地，𝑠 = 1时，𝐴1(𝑁) = Γ(𝑇 ∗𝑁), 从而∀𝑋 ∈ 𝑇𝑝𝑀 , (𝑓∗𝜃)𝑝(𝑋) = 𝜃𝑓(𝑝)(𝑓∗𝑝(𝑋)), 和之前定义的对偶映射定

义𝑓∗
𝑝(𝜃𝑓(𝑝)) ≔ 𝜃𝑓(𝑝) ∘ 𝑓∗𝑝是一致的. 这个映射又被称为拉回映射(pull-back map).

然后对于外积运算，和张量积几乎一样的有

引理(𝑓诱导的外积). 𝑓∗(𝑤1 ∧ 𝑤2) = 𝑓∗(𝑤1) ∧ 𝑓∗(𝑤2).

3.外微分

定义(外微分). 映射𝑑 : 𝐴(𝑀) → 𝐴(𝑀)被称为外微分，若

(i) 𝑑是线性的. 𝑑(𝑘𝑤1 + 𝑤2) = 𝑘𝑑𝑤1 + 𝑑𝑤2. ∀𝑤1, 𝑤2 ∈ 𝐴(𝑀).

(ii) ∀𝑓 ∈ 𝐶∞(𝑀) = 𝐴0(𝑀), 𝑑𝑓(𝑝) = 𝑑𝑓𝑝是之前定义的普通微分，且𝑑(𝑑𝑓) = 0.

(iii) 𝑑(𝑤1 ∧ 𝑤2) = 𝑑𝑤1 ∧ 𝑤2 + (−1)𝑟𝑤1 ∧ 𝑑𝑤2, 其中𝑤1 ∈ 𝐴𝑟(𝑀), 𝑤2 ∈ 𝐴(𝑀).
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定理(外微分的存在唯一性). 存在唯一的外微分映射𝑑 : 𝐴(𝑀) → 𝐴(𝑀). 这里具体来说，𝑑是局部的，且在坐
标卡上𝑑存在且有唯一表达.

为证明上述结论，我们先给出一些引理.

引理(外微分的性质). 设𝑑 : 𝐴(𝑀) → 𝐴(𝑀)是外微分，则

(i) 若𝑤1|𝑈 = 𝑤2|𝑈 , 𝑈是非空开集，则𝑑(𝑤1)|𝑈 = 𝑑(𝑤2)|𝑈 .

(ii) 任意给定一个非空开集𝑈，存在唯一的外微分𝑑𝑈 : 𝐴(𝑈) → 𝐴(𝑈), 𝑑𝑈(𝑤|𝑈) = (𝑑𝑤)|𝑈 . 即使用整体的外微

分可以定义局部的外微分.

证明：(i) 使用之前给出的局部化引理. 令𝑤 ≔ 𝑤1 − 𝑤2, 则𝑤|𝑈 = 0. 只需证𝑑𝑤|𝑈 = 0. 任取𝑝 ∈ 𝑈 , 取包含𝑝开领域𝑉 ⊂ 𝑉 ⊂ 𝑈 , 

以及𝑓 ∈ 𝐶∞(𝑀), 满足𝑓|𝑉 ≡ 1, 𝑓|𝑀−𝑈 ≡ 0. 从而𝑓𝑤 ≡ 0，𝑑(𝑓𝑤) ≡ 0. 由外微分定义(iii)𝑑(𝑓𝑤) = 𝑑𝑓 ∧ 𝑤 + 𝑓 ∧ 𝑑𝑤 = 0. 代入𝑝
有𝑑𝑓(𝑝) ∧ 𝑤(𝑝)⏟

=0

+ 𝑓(𝑝)⏟
=1

𝑑𝑤(𝑝) = 0,从而得证.

(ii) 先定义𝑑𝑈 , 验证良定义，再验证其是外微分. 具体来说，∀𝑤 ∈ 𝐴𝑟(𝑈), 𝑝 ∈ 𝑈 , 取𝑝 ∈ 𝑉 ⊂ 𝑉 ⊂ 𝑉1 ⊂ 𝑉1 ⊂ 𝑈 , 以及𝑓 ∈
𝐶∞(𝑀), 满足𝑓|𝑉 ≡ 1, 𝑓|𝑀−𝑉1

≡ 0. 令

𝑤̃(𝑞) = {𝑓𝑤(𝑞), 𝑞 ∈ 𝑈
0, 𝑞 ∉ 𝑈 (29)
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直接令𝑑𝑈𝑤(𝑞) = 𝑑𝑤̃(𝑞). 先验证其良定义性. 设(𝑉 , 𝜑̃; 𝑥̃𝑖)是另一个坐标卡, 则𝑓𝑤 |𝑉 ∩𝑉 = 𝑤|𝑉 ∩𝑉 = 𝑓𝑤 |𝑉 ∩𝑉，利用(i)可知

𝑑(𝑓𝑤)|𝑉 ∩𝑉 = 𝑑(𝑓𝑤)|𝑉 ∩𝑉，从而𝑝点处相等.

下面验证𝑑𝑈𝐴(𝑀) → 𝐴(𝑀)是外微分. 线性性𝑑𝑈(𝑘1𝑤1 + 𝑤2)(𝑝) = 𝑑𝑓(𝑘1𝑤1 + 𝑤2)(𝑝) = 𝑘𝑑𝑓𝑤1(𝑝) + 𝑑𝑓𝑤2(𝑝) =
𝑘𝑑𝑈(𝑤1)(𝑝) + 𝑑𝑈(𝑤2)(𝑝).

下面验证第二条性质. ∀𝑔 ∈ 𝐶∞(𝑈), 𝑑𝑈(𝑔)(𝑝) = 𝑑𝑓𝑔(𝑝) = 𝑑𝑓(𝑝)⏟
=0

𝑔(𝑝) + 𝑑𝑔(𝑝)𝑓(𝑝)⏟
=1

= 𝑑𝑔(𝑝). 且𝑑𝑈(𝑑𝑈𝑔)(𝑝) = 𝑑𝑓(𝑑𝑈𝑔)(𝑝) =

𝑑𝑓(𝑑𝑓𝑔)(𝑝). 这是因为𝑑𝑈𝑔|𝑉 = 𝑑(𝑓𝑔)|𝑉 , 从而(𝑓𝑑𝑈𝑔)|𝑉 = (𝑓𝑑(𝑓𝑔))|𝑉 , 再由(i)可知𝑑(𝑓𝑑𝑈𝑔)|𝑉 = 𝑑(𝑓𝑑(𝑓𝑔))|𝑉 = 𝑑𝑓(𝑝)⏟
=0

∧

𝑑(𝑓𝑔)(𝑝) + 𝑓𝑑(𝑑(𝑓𝑔))(𝑝)⏟
=0

= 0.

下面看第三条. ∀𝑤1 ∈ 𝐴𝑟(𝑈), 𝑤2 ∈ 𝐴(𝑈), 由定义，𝑑𝑈𝑤1(𝑝) = 𝑑𝑓𝑤1(𝑝), 𝑑𝑈𝑤2(𝑝) = 𝑑𝑓𝑤2(𝑝), 𝑑𝑈(𝑤1 ∧ 𝑤2)(𝑝) = 𝑑𝑓(𝑤1 ∧
𝑤2) = 𝑑𝑓2(𝑤1 ∧ 𝑤2), 从而𝑑𝑈(𝑤1 ∧ 𝑤2) = 𝑑𝑓2(𝑤1 ∧ 𝑤2) = 𝑑(𝑓𝑤1) ∧ (𝑓𝑤2) + (−1)𝑟(𝑓𝑤1) ∧ 𝑑(𝑓𝑤2). 证毕.

唯一性则根据定义中使用的𝑑本身的全局性来证明.

∎

引理(坐标卡上的外微分). 设(𝑈, 𝜑; 𝑥𝑖)是𝑀上的一个坐标卡，则存在唯一的外微分𝑑 : 𝐴(𝑈) → 𝐴(𝑈).

证明：直接使用基底和外积来定义，然后验证其满足外微分的定义. ∀𝑤 ∈ 𝐴𝑟(𝑈), 𝑤 = ∑𝑖1<⋯<𝑖𝑟
𝑤𝑖1⋯𝑖𝑟

𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 , 其中

𝑑𝑥𝑖 ∈ 𝐴1(𝑈), 𝑤𝑖1⋯𝑖𝑟
∈ 𝐶∞(𝑈), 直接定义(其他几项都是函数芽的二次外微分，为0)
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𝑑𝑤 = ∑
𝑖1<⋯<𝑖𝑟

𝑑𝑤𝑖1⋯𝑖𝑟
∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 . (30)

验证其满足外微分的三条性质. 𝑑(𝑘𝑤1 + 𝑤2) 线性性显然成立，因为𝑑作用在函数芽上是线性的. 对于第二条，∀𝑓 ∈ 𝐶∞(𝑈), 
𝑑𝑓 = 𝜕𝑓

𝜕𝑥𝑗 𝑑𝑥𝑗, 𝑑(𝑑𝑓) = 𝑑 𝜕𝑓
𝜕𝑥𝑗 ∧ 𝑑𝑥𝑗 = 𝜕2𝑓

𝜕𝑥𝑘𝑥𝑗 𝑑𝑥𝑘 ∧ 𝑑𝑥𝑗 = 0.

对于第三条，我们只考察外积表达式中的一项，求和是类似的。∀𝑤1 = 𝑓𝑑𝑤𝑖1 ∧ ⋯ ∧ 𝑑𝑤𝑖𝑟 , 𝑤2 = 𝑔𝑑𝑤𝑗1 ∧ ⋯ ∧ 𝑑𝑤𝑗𝑠 ,

𝑑(𝑤1 ∧ 𝑤2) = 𝑑(𝑓𝑔𝑑𝑤𝑖1 ∧ ⋯ ∧ 𝑑𝑤𝑖𝑟 ∧ 𝑑𝑤𝑗1 ∧ ⋯ ∧ 𝑑𝑤𝑗𝑠)

= 𝑑(𝑓𝑔) ∧ 𝑑𝑤𝑖1 ∧ ⋯ ∧ 𝑑𝑤𝑖𝑟 ∧ 𝑑𝑤𝑗1 ∧ ⋯ ∧ 𝑑𝑤𝑗𝑠

= (𝑔𝑑𝑓 + 𝑓𝑑𝑔) ∧ 𝑑𝑤𝑖1 ∧ ⋯ ∧ 𝑑𝑤𝑖𝑟 ∧ 𝑑𝑤𝑗1 ∧ ⋯ ∧ 𝑑𝑤𝑗𝑠

= (𝑑𝑓 ∧ 𝑑𝑤𝑖1 ∧ ⋯ ∧ 𝑑𝑤𝑖𝑟) ∧ (𝑔𝑑𝑤𝑗1 ∧ ⋯ ∧ 𝑑𝑤𝑗𝑠) + (−1)𝑟(𝑓𝑑𝑤𝑖1 ∧ ⋯ ∧ 𝑑𝑤𝑖𝑟) ∧ (𝑑𝑔 ∧ 𝑑𝑤𝑗1 ∧ ⋯ ∧ 𝑑𝑤𝑗𝑠)
= 𝑑𝑤1 ∧ 𝑤2 + (−1)𝑟𝑤1 ∧ 𝑑𝑤2.

(31)

唯一性.

∎

下面给出原定理的证明.

证明： 存在性的证明. 我们利用坐标卡定义全局上的外微分. ∀𝑤 ∈ 𝐴(𝑀), ∀𝑝 ∈ 𝑀 , 取含𝑝的坐标卡(𝑈, 𝜑; 𝑥𝑖), 由上述引理，

存在外微分𝑑𝑈 : 𝐴(𝑈) → 𝐴(𝑈). 定义𝑑 : 𝐴(𝑀) → 𝐴(𝑀), 为𝑑𝑤(𝑝) = 𝑑𝑈(𝑤|𝑈)(𝑝). 由引理可知是良定义的。具体来说，𝑉是含
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𝑝的另一个坐标卡，𝑈 ∩ 𝑉 ⊂ 𝑈 , 𝑈 ∩ 𝑉 ⊂ 𝑉 , 从而由引理，(𝑑𝑈(𝑤|𝑈))|𝑈∩𝑉 = 𝑑𝑈∩𝑉 (𝑤|𝑈∩𝑉 ) = (𝑑𝑉 (𝑤|𝑉 ))|𝑈∩𝑉，从而𝑝点处相
等。

唯一性. 设𝑑1, 𝑑2是𝐴(𝑀) → 𝐴(𝑀)的外微分，则由引理，其在坐标卡上分别定义了𝑑1,𝑈 , 𝑑2,𝑈 , 由上面的引理，坐标卡上的外

微分唯一.

∎

定理(两次外微分). 𝑑 ∘ 𝑑 = 0.

证明： 只需在坐标卡上计算. 不妨只取𝑤 = 𝑓𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 , 从而𝑑𝑤 = 𝑑𝑓 ∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 , 𝑑𝑓 = 𝜕𝑓
𝜕𝑥𝑗 𝑑𝑥𝑗, 从而

𝑑(𝑑𝑤) = (𝑑 𝜕𝑓
𝜕𝑥𝑗 ) ∧ 𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟

= ( 𝜕2𝑓
𝜕𝑥𝑘𝑥𝑗 𝑑𝑥𝑘 ∧ 𝑑𝑥𝑗) ∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 = 0.

(32)

因为任何互异的指标𝑗 ≠ 𝑘各出现一次。

∎



1 张量代数

2 Frobenius 定理

3 流形上的积分

4 De Rham 同调



1 张量代数

2 Frobenius 定理

3 流形上的积分

4 De Rham 同调



3 流形上的积分

1.流形的定向

利用𝑛次外形式定义𝑛维线性空间的基的方向。设𝑉是向量空间，𝑒1, ⋯, 𝑒𝑛是一组基，𝑒𝑡
1, ⋯, 𝑒𝑡

𝑛是

一组连续变化的基，则其确定相同的定向。

由dim(∧𝑛 (𝑉 ∗)) = 1, 取生成元Ω ∈ ∧𝑛 (𝑉 ∗), 则Ω(𝑒𝑡
1, ⋯, 𝑒𝑡

𝑛) ∈ ℝ \ {0}是连续变化的，符号不变。

定义(向量空间基的定向). ∧𝑛 (𝑉 ∗) − {0}的连通分支被称为定向，显然有两个连通分支。给定定向[Ω]后，若
(𝑒1, ⋯, 𝑒𝑛)满足Ω(𝑒1, ⋯, 𝑒𝑛) > 0, 则称该组基与定向[Ω]相符。

下面给出流形的定向。

定义(流形的定向). 设𝑀是𝑚维光滑流形，若𝜔 ∈ 𝐴𝑚(𝑀)处处非零，则称𝑀是可定向的，且称𝜔是定向𝑚 −形
式。两个定向𝑚 −形式𝜔1, 𝜔2称为等价的，若存在𝑓 ∈ 𝐶∞(𝑀)处处非零，使得𝜔1 = 𝑓𝜔2. 流形𝑀的一个定向
是定向𝑚 −形式的一个等价类.

利用流形上的单位分解，我们可以得到

定理(可定向与 Jacobi矩阵). 设𝑀是可定向流形，当且仅当存在坐标卡覆盖{𝑈𝛼, 𝜑𝛼; 𝑥𝑖
𝛼}满足𝐷(𝜑𝛼 ∘ 𝜑−1

𝛽 ) =
det(𝜕𝑥𝑖

𝛼
𝜕𝑥𝑗

𝛽
) > 0, ∀𝑢𝛼 ∩ 𝑢𝛽 ≠ ∅.
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证明：必要性可以直接通过不同的外微分坐标变换得到行列式。 充分性：取从属于𝑈𝛼的单位分解

∎

定理(推论). 流形𝑀可定向，当且仅当存在𝑀的开覆盖{𝑈𝛼}以及处处非零的𝑤𝛼 ∈ 𝐴𝑚(𝑈𝛼)，且当𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅
时，𝑤𝛼 = 𝑓𝛽

𝛼𝑤𝛽, 𝑓𝛽
𝛼 > 0.

记[𝑤]时流行的定向，𝑤𝛼 ∈ 𝐴𝑚(𝑈𝛼)若满足𝑤𝛼 = 𝑓𝛼𝑤|𝑈𝛼
, 𝑓𝛼 > 0，则称𝑤𝛼与定向[𝑤]相符.

设(𝑈, 𝜑; 𝑥𝑖)时坐标卡，若𝑑𝑥1 ∧ ⋯𝑑𝑥𝑚 = 𝑓𝑤|𝑈 , 𝑓 > 0，称该坐标卡与定向[𝑤]相符.

例(). 求证𝑃𝑚(𝑅)可定向当且仅当𝑚为奇数.

2.流形上的积分

设(𝑈1, 𝜑1; 𝑥𝑖
1)和(𝑈2, 𝜑2; 𝑥𝑖

2)是两个坐标卡与定向[𝑤0]相符的坐标卡。任意𝑤 ∈ 𝐴𝑚(𝑀)在坐标卡
内可写成

𝑤|𝑈1
= 𝑔1𝑑𝑥1

1 ∧ ⋯ ∧ 𝑑𝑥𝑚
1

𝑤|𝑈2
= 𝑔2𝑑𝑥1

2 ∧ ⋯ ∧ 𝑑𝑥𝑚
2

(33)
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引理(积分变换公式). 设supp𝑔1是𝑈1 ∩ 𝑈2的紧子集，则

∫
𝜑1(𝑈1∩𝑈2)

𝑔1 ∘ 𝜑−1
1 𝑑𝑥1

1⋯𝑑𝑥𝑚
1 = ∫

𝜑2(𝑈1∩𝑈2)
𝑔2 ∘ 𝜑−1

2 𝑑𝑥1
2⋯𝑑𝑥𝑚

2 (34)

证明：利用欧氏空间的多元积分变换公式.

∎

下面定义外形式的积分.

设𝑀可定向，[𝑤0]为其定向，𝑤 ∈ 𝐴𝑚(𝑀)且supp𝑤 = {𝑝 ∈ 𝑀 : 𝑤(𝑝) ≠ 0}是紧集. 从而可以用有

限个与定向相符的坐标卡{(𝑈𝛼, 𝜑𝛼; 𝑥𝑖
𝛼)}

𝛼∈𝐽
覆盖supp𝑤, 从而{𝑈𝛼}𝛼 ∪ (𝑀 − supp𝑤)为𝑀的开覆

盖. 取从属于该开覆盖的单位分解𝑓𝛼, 且supp𝑓𝛼 ⊂ 𝑈𝛼, supp𝑓0 ⊂ 𝑀 − supp𝑤, ∑𝛼 𝑓𝛼 + 𝑓0 = 1.

发现𝑤 = (∑𝛼 𝑓𝛼 + 𝑓0)𝑤 = ∑𝛼 𝑓𝛼𝑤. 在(𝑈𝛼, 𝜑𝛼; 𝑥𝑖
𝛼)中，𝑤 = 𝑔𝛼𝑑𝑥1

𝛼 ∧ ⋯𝑑𝑥𝑚
𝛼 . 于是可以定义

∫
𝑀

𝑤 ≔ ∑
𝛼

∫
𝜑𝛼(𝑈𝛼)

(𝑓𝛼𝑔𝛼) ∘ 𝜑−1
𝛼 𝑑𝑥1

𝛼⋯𝑑𝑥𝑚
𝛼 . (35)

定理(积分的良定义性). 上述积分与坐标卡的选取以及单位分解无关.
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证明：

∎

3.带边界流形

记ℝ𝑚
+ = {(𝑥1, ⋯, 𝑥𝑚) : 𝑥𝑚 ≥ 0}. 任取开集𝑈 ⊂ ℝ𝑚

+ , 定义其内部Int𝑈 = 𝑈 ∩ {𝑥𝑚 > 0}, 其边界

𝜕𝑈 = 𝑈 ∩ {𝑥𝑚 = 0}. 注意我们不取内部的边界. 我们利用延拓来定义.

称𝑓 : 𝑈 → ℝ是𝐶1的，若存在ℝ𝑚中开集𝑈̃ ⊃ 𝑈以及𝐶1函数𝑓 : 𝑈̃ → ℝ, 且𝑓|𝑈 = 𝑓 . 对𝐹 =
(𝑓1, ⋯, 𝑓𝑛) : 𝑈 → ℝ𝑛, 也类似定义其为𝐶1的.

由于延拓出去了，所以可定义𝐷𝑓(𝑥) = 𝐷𝑓(𝑥). 这是良定义的.

定义(带边流形的𝐶1同胚). 设𝑈, 𝑉 ⊂ ℝ𝑚
+是开集，称𝐹 : 𝑈 → 𝑉是𝐶1同胚，若存在𝐶1映射𝐺 : 𝑉 → 𝑈 , s.t. 𝐹 ∘

𝐺 = id𝑉 , 𝐺 ∘ 𝐹 = id𝑈 .

引理(内部映到内部，边界映到边界). 设𝐹 : 𝑈 → 𝑉是𝐶1同胚，则𝐹(Int𝑈) = Int𝑉 , 𝐹(𝜕𝑈) = 𝜕𝑉 , 即𝐹|Int𝑈 :
Int𝑈 → Int𝑉和𝐹|𝜕𝑈 : 𝜕𝑈 → 𝜕𝑉是𝐶1同胚.

证明：利用之前的引理以及单位分解的性质. 若∃𝑝 ∈ 𝑈 , s.t. 𝐹(𝑝) ∈ 𝜕𝑉 , 令𝐹(𝑥) = (𝑓1(𝑥), ⋯, 𝑓𝑚(𝑥)), 𝑓𝑚(𝑝) = 0, 𝑓𝑚(𝑥) >
0, ∀𝑥 ∈ 𝑈. 从而𝜕𝑓𝑚

𝜕𝑥𝑖 (𝑝) = lim𝑡→0
𝑓𝑚(𝑝+𝑡𝑒𝑖)−𝑓𝑚(𝑝)

𝑡 = 0, ∀𝑖 = 1, ⋯, 𝑚 (Fermat’s, 𝑝是𝑓𝑚在区域内部的极值点，每个方向都可逼
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近，从而能够取0). 于是𝐷𝐹(𝑝) = (
∗

0,⋯,0⏟
𝑚

), rank𝐷𝐹(𝑝) < 𝑚. 但是𝐹是同胚，即存在𝐺 : 𝑉 → 𝑈 , s.t. 𝐺 ∘ 𝐹 = id𝑈 , 于是

𝐷𝐺(𝐹(𝑝))𝐷𝐹(𝑝) = 𝐸𝑚,矛盾.

∎

定义(带边流形). 设𝑀是满足𝐴2公理的 Hausdorff空间，若∀𝑝 ∈ 𝑀 , 存在开邻域𝑈以及𝜑 : 𝑈 → 𝜑(𝑈) ⊂ ℝ𝑚
+是

同胚，则称(𝑈, 𝜑)是坐标卡. 若存在坐标图册{(𝑈𝛼, 𝜑𝛼)}使得𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅时，有𝜑𝛼(𝑈𝛼 ∩ 𝑈𝛽) →
𝜑𝛽∘𝜑−1

𝛼
𝜑𝛽(𝑈𝛼 ∩

𝑈𝛽)是𝐶𝑘的，则称𝑀是带边界流形.

引理(内部的表达). Int𝑀 = {𝑥 ∈ 𝑀 : ∃𝑥 坐标邻域𝑈 𝑠.𝑡 𝜑(𝑥) ∈ Int(𝜑(𝑈))}

引理(边界的表达). 𝜕𝑀 = {𝑥 ∈ 𝑀 : ∃𝑥 坐标邻域𝑈 𝑠.𝑡 𝜑(𝑥) ∈ 𝜕(𝜑(𝑈))}

引理(边界作为流形). 𝜕𝑀是(𝑚 − 1)维𝐶𝑘流形.

证明：∀𝑝 ∈ 𝑀 , 取𝑀上的坐标卡(𝑈, 𝜑; 𝑥𝑖), 由带边流形定义，𝜑|𝑈∩𝜕𝑀 : 𝑈 ∩ 𝜕𝑀 → 𝜕(𝜑(𝑈)). 设(𝑈, 𝜑; 𝑥𝑖)和(𝑉 , 𝜓; 𝑦𝑖)是两个
坐标卡, 则坐标变换

(𝑥1⋯, 𝑥𝑚−1) → (𝑥1⋯, 𝑥𝑚−1, 0) → (𝑦1, ⋯, 𝑦𝑚−1, 0) → (𝑦1, ⋯, 𝑦𝑚−1) (36)

是光滑的.

∎
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定义(可定向的带边流形). 𝑀是带边流形，则它是可定向的，若存在坐标图册(𝑈𝛼, 𝜑𝛼; 𝑥𝑖
𝛼), 使得𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, 

𝐷(𝜑𝛼 ∘ 𝜑−1
𝛽 ) > 0.

引理(可定向的边界). 𝑀是可定向的，则𝜕𝑀是可定向的.

证明：将上述的坐标图册(𝑈𝛼)限制在边界上. 当𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝜕𝑀 ≠ ∅, 只需验证𝐷𝜑𝛼|𝑈𝛼∩𝑈𝛽∩𝜕𝑀
∘ 𝜑−1

𝛽|𝑈𝛼∩𝑈𝛽∩𝜕𝑀
> 0.

∎

设[𝑤0]是𝑀上的定向，给定与其相符的坐标图册{(𝑈𝛼, 𝜑𝛼; 𝑥𝑖
𝛼)}, 则

{(𝑈𝛼 ∩ 𝜕𝑀, 𝜑𝛼|𝑈𝛼∩𝜕𝑀 ; 𝑥𝑖
𝛼, 𝑖 = 1, ⋯, 𝑚 − 1)} (37)

给出了𝜕𝑀的定向.

定义(边界上的定向). 设(𝑈, 𝜑; 𝑥𝑖)与[𝑤0]相符，称(−1)𝑚𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑚−1为[𝑤0]在𝜕𝑀上的诱导定向.

定理(Stokes定理). 设𝑀是可定向的光滑带边流形，𝑤 ∈ 𝐴𝑚−1(𝑀)有紧支集，则

∫
𝑀

𝑑𝑤 = ∫
𝜕𝑀

𝑤|𝜕𝑀 . (38)



3 流形上的积分

记𝑖 : 𝜕𝑀 → 𝑀 , 𝑤|𝜕𝑀 = 𝑖∗𝑤, 𝜕𝑀上的积分由诱导定向计算.

证明：由外微分的积分定义，取单位分解𝑓𝛼, 𝑤 = ∑𝛼 𝑓𝛼𝑤, 完成了对曲面和曲线的分割. LHS = ∑𝛼 ∫
𝑀

𝑑(𝑓𝑖𝑤), RHS =
∑𝛼 ∫

𝜕𝑀
𝑓𝑖𝑤. 只需证在每个坐标卡上成立. 不妨只取一个坐标卡(𝑈, 𝜑; 𝑥𝑖)，且supp𝑤 ⊂ 𝑈 .

第一种情形. 𝑈 ⊂ Int𝑀，即𝑈 ∩ 𝜕𝑀 = ∅. 不妨𝜑(𝑈) = (0, 1)𝑚. 记𝑤 = ∑𝑚
𝑖=1 (−1)𝑖−1𝑔𝑖𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑖 ∧ ⋯ ∧ 𝑑𝑥𝑚, 从而𝑑𝑤 =

∑𝑚
𝑖=1

𝜕𝑔𝑖
𝜕𝑥𝑖 𝑑𝑥1 ∧ ⋯ ∧ 𝑑𝑥𝑚. 从而

∫
𝑀

𝑑𝑤 = ∫
𝑈

𝑑𝑤 = ∑
𝑚

𝑖=1
∫

𝜑(𝑈)

𝜕𝑔𝑖
𝜕𝑥𝑖 𝑑𝑥1⋯𝑑𝑥𝑚 (39)

∫
𝜑(𝑈)

𝜕𝑔𝑖
𝜕𝑥𝑖 𝑑𝑥1⋯𝑑𝑥𝑚 = 0 (40)

因为累次积分之后，紧支集让碰到被积边界的𝑔𝑖 = 0.

第二种情形. 𝑈 ∩ 𝜕𝑀 ≠ ∅. 不妨𝜑(𝑈) = (0, 1)𝑚−1 × [0, 1). 只需计算𝑖 = 𝑚的情形.

∫
𝜑(𝑈)

𝜕𝑔𝑖
𝜕𝑥𝑖 𝑑𝑥1⋯𝑑𝑥𝑚 = ∫

[0,1]𝑚−1

𝑑𝑥1⋯𝑑𝑥𝑚−1 ∫
1

0

𝜕𝑔𝑚
𝜕𝑥𝑚 𝑑𝑥𝑚

= − ∫
[0,1]𝑚−1

𝑔𝑚(𝑥1, ⋯, 𝑥𝑚−1, 0)𝑑𝑥1⋯𝑑𝑥𝑚−1.
(41)
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∎

定理(推论). 𝑀是光滑流形，则∫
𝑀

𝑑𝑤 = 0, ∀𝑤 ∈ 𝐴𝑚−1(𝑀)且supp𝑤紧.



1 张量代数

2 Frobenius 定理

3 流形上的积分

4 De Rham 同调



4 De Rham 同调

定义(特别形式). 𝑤 ∈ 𝐴𝑟(𝑀), 若𝑑𝑤 = 0, 则称𝑤是闭形式. 若存在𝜎 ∈ 𝐴𝑟−1(𝑀)使得𝑤 = 𝑑𝜎, 则称𝑤是恰当形式.

由𝑑2 = 0, 可知恰当形式必为闭形式. 反之不一定成立. 可结合如下例子.

例(Im[(𝑑𝑧)/𝑧]). 𝑀 = ℝ2 − {0}, 𝑤 = −𝑥2

(𝑥1)2+(𝑥2)2 𝑑𝑥1 + 𝑥1

(𝑥1)2+(𝑥2)2 𝑑𝑥2. 则𝑑𝑤 = 0. 但不存在𝜎 ∈ 𝐴0(𝑀) =
𝐶∞(𝑀)使得𝑤 = 𝑑𝜎.

更一般地，𝑀是紧致可定向的光滑流形，则𝑤 ∈ 𝐴𝑚(𝑀)是恰当的， 当且仅当∫
𝑀

𝑤 = 0.

1.上链复形

定义(上链复形). (i) 设𝐶𝑖(0 ≤ 𝑖 ≤ 𝑚)是线性空间，𝑑𝑖 : 𝐶𝑖 → 𝐶𝑖+1是线性映射，若𝑑𝑖+1 ∘ 𝑑𝑖 = 0, 则

0 →
0

𝐶0 →
𝑑0

𝐶1 → ⋯ → 𝐶𝑚−1 →
𝑑𝑚−1

𝐶𝑚 →
𝑑𝑚

0 (42)

为上链复形（cochain complex）, 记为(𝐶 ⋅, 𝑑⋅).

(ii) 由𝑑𝑖 ∘ 𝑑𝑖−1 = 0, 得Im𝑑𝑖−1 ⊂ ker 𝑑𝑖. 定义第𝑖个同调群(homology group)为

𝐻𝑖(𝐶 ⋅) = ker 𝑑𝑖/ Im 𝑑𝑖−1. (43)
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(iii) 设𝑀是光滑流形，令𝐶𝑖 = 𝐴𝑖(𝑀), 𝑑𝑖 = 𝑑|𝐴𝑖(𝑀), 由𝑑 ∘ 𝑑 = 0. (𝐶𝑖, 𝑑𝑖)是上链复形，相应的𝐻𝑖(𝐶 ⋅, 𝑑⋅)称为
𝑀的第𝑖个 de Rham上同调群，记为𝐻𝑖

𝑑𝑅(𝑀).

例(特别的同调群). (i) 𝐻0
𝑑𝑅(𝑀) = ker{𝑓 ∈ 𝐶∞(𝑀) : 𝑑𝑓 = 0} = {𝑓 ∈ 𝐶∞ : 𝑓 ≡ 𝐶 在每一个连通分支}. 所有

的 1-形式都是闭形式，即𝐴1(𝑀) = ker 𝑑1, 故𝐻1
𝑑𝑅(𝑀) = 𝐴1(𝑀)/(𝑑𝐶∞(𝑀)).

(ii) 𝐻𝑚
𝑑𝑅(𝑀) = (𝐴𝑚(𝑀))/(𝑑𝐴𝑚−1(𝑀)), 即所有的𝑚 −形式(自然是闭形式)模去恰当𝑚 −形式.

上链复形一般用于构造上同调群，这里的 complex是代数中“组合体、组合体”的含义，和复数

中的 complex有所区别。而上链复形是与链复形(chain complex)对偶的概念，后者在同调代数中

有重要应用。下面讨论(上)链复形之间的映射.

定义(链映射). 设(𝐴⋅, 𝑑⋅), (𝐵⋅, 𝑑′⋅)是两个上链复形，若存在一族线性映射{𝑓 𝑖 : 𝐴𝑖 → 𝐵𝑖}, 使得𝑑′𝑖 ∘ 𝑓 𝑖 = 𝑓 𝑖+1 ∘
𝑑𝑖(保持结构), 则称𝑓 ⋅ = {𝑓 𝑖}𝑚

𝑖=0
为两个上链复形之间的链映射(chain map).

𝑓 𝑖 𝑓 𝑖+1

𝑑𝑖

𝑑′𝑖

𝐴𝑖

𝐵𝑖

𝐴𝑖+1

𝐵𝑖+1
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例(拉回映射). (i) 设𝑓 : 𝑀 → 𝑁是光滑映射，则𝑓∗ : 𝐴(𝑁) → 𝐴(𝑀)满足𝑑(𝑓∗𝑤) = 𝑓∗(𝑑𝑤), 故是链映射. 这里

保持的结构就是将闭形式映为闭形式，恰当形式映为恰当形式.

证明：前面易证.

∎

引理(链映射诱导同态). 设𝑓 : 𝐴⋅ → 𝐵⋅是链映射，则𝑓诱导[𝑓] : {[𝑓 𝑖] : 𝐻𝑖(𝐴⋅) → 𝐻𝑖(𝐵⋅)}, [𝑓 𝑖]是线性映射.

证明：∀[𝑎] ∈ 𝐻𝑖(𝐴⋅), 定义[𝑓 𝑖]([𝑎]) = [𝑓 𝑖(𝑎)]. 需证明是确实位于Im(𝑑𝑖−1), 且良定义的. 因为𝑑𝑖(𝑓 𝑖(𝑎)) = 𝑓 𝑖+1(𝑑𝑖(𝑎)) =
𝑓 𝑖+1(0) = 0. 若[𝑎′] = [𝑎], 则𝑎′ − 𝑎 ∈ Im(𝑑𝑖−1), 于是∃𝑥 ∈ 𝐴𝑖−1, s.t. 𝑎′ − 𝑎 = 𝑑𝑖−1𝑥, 𝑓 𝑖(𝑎′ − 𝑎) = 𝑓 𝑖(𝑑𝑖−1𝑥) = 𝑑𝑖−1(𝑓 𝑖𝑥) ∈
Im(𝑑𝑖), 从而[𝑓 𝑖𝑎′] = [𝑓 𝑖𝑎]. 线性请自行验证.

∎

定理(推论). 设𝑓 : 𝐴⋅ → 𝐵⋅, 𝑔 : 𝐵⋅ → 𝐶 ⋅是链映射，则[𝑔 ∘ 𝑓] = [𝑔] ∘ [𝑓]. 特别地，id : 𝐴⋅ → 𝐴⋅诱导恒等映射

[id] = id : 𝐻𝑖(𝐴⋅) → 𝐻𝑖(𝐴⋅).

定理(推论). 设𝑓 : 𝑀 → 𝑁是光滑同胚，则𝐻𝑖
𝑑𝑅(𝑀) ≅ 𝐻𝑖

𝑑𝑅(𝑁).

证明： 设𝑓∗ : 𝐴(𝑁) → 𝐴(𝑀)是链映射，其逆映射(𝑓−1)∗ : 𝐴(𝑀) → 𝐴(𝑁)也是链映射，且(𝑓−1)∗ ∘ 𝑓∗ = id𝐴(𝑁), 𝑓∗ ∘
(𝑓−1)∗ = id𝐴(𝑀). 由之前的推论，诱导同构[𝑓∗] : 𝐻𝑖

𝑑𝑅(𝑁) → 𝐻𝑖
𝑑𝑅(𝑀)以及[(𝑓−1)∗] : 𝐻𝑖

𝑑𝑅(𝑀) → 𝐻𝑖
𝑑𝑅(𝑁)互为逆映射.

∎
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注：对比0 → 𝐶0 → ⋯ → 𝐶𝑚 → 0, 其上的同调群为0 → 𝐻0 → ⋯ → 𝐻𝑚 → 0, 作为链复形，其

同调群是自身.

2.正合列

闭形式都是恰当形式，对应下面的定义

定义(正合). (i) 称𝐴 →
𝑓

𝐵 →
𝑔

𝐶, 在𝐵处正合(exact)，若Im𝑓 = ker 𝑔.

(ii) 若0 → 𝐴0 → 𝐴1 → ⋯ → 𝐴𝑙 → 0在每个𝐴𝑖处正合，称为正合链.

定理(从短正合列到长正合列). 设𝐴⋅, 𝐵⋅, 𝐶 ⋅是三个链复形，𝑓 : 𝐴⋅ → 𝐵⋅, 𝑔 : 𝐵⋅ → 𝐶 ⋅是链映射，且

0 → 𝐴𝑖 → 𝐵𝑖 → 𝐶𝑖 → 0 (短正合列) (44)

在每个𝑖处正合，则存在连接同态𝛿𝑖 : 𝐻𝑖(𝐶 ⋅) → 𝐻𝑖+1(𝐴⋅)使得下列序列正合

… → 𝐻𝑖(𝐴⋅) →
[𝑓𝑖]

𝐻𝑖(𝐵⋅) →
[𝑔𝑖]

𝐻𝑖(𝐶 ⋅) →
𝛿𝑖

𝐻𝑖+1(𝐴⋅) → … (长正合列) (45)

证明：定义𝛿𝑖 : 𝐻𝑖(𝐶 ⋅) → 𝐻𝑖+1(𝐴⋅), ∀[𝑐𝑖] ∈ 𝐻𝑖(𝐶 ⋅)(类似于闭形式). 由𝑔𝑖满射，∃𝑏𝑖 ∈ 𝐵𝑖 s.t. 𝑔𝑖(𝑏𝑖) = 𝑐𝑖. 由𝑑𝑏𝑖 ∈ 𝐵𝑖+1 满足链

性质𝑔𝑖+1(𝑑𝑏𝑖) = 𝑑(𝑔𝑖(𝑏𝑖)) = 𝑑𝑐𝑖 = 0. 利用短正合列性质，ker 𝑔𝑖+1 = Im(𝑓 𝑖+1), 于是∃𝑎𝑖 ∈ 𝐴𝑖+1，s.t. 𝑓 𝑖+1(𝑎𝑖+1) = 𝑑𝑏𝑖. 可证
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𝑎𝑖+1是闭的(𝑑2𝑏𝑖 = 0 ⇒ 𝑓 𝑖+2(𝑑𝑎𝑖+1) = 𝑑𝑓 𝑖+1(𝑎𝑖+1) = 𝑑(𝑑𝑏𝑖) = 0 ⇒ 𝑑𝑎𝑖+1 = 0). 于是定义𝛿𝑖([𝑐𝑖]) = [𝑎𝑖+1]. 下面证明 i) 𝛿良定
义 ii) 该序列正合.

𝑑

𝑓 𝑖

𝑑

𝑑
𝑓 𝑖+1

𝑔𝑖 𝑔𝑖+1

𝐴𝑖

𝐵𝑖

𝐴𝑖+1

𝐵𝑖+1

𝐶𝑖 𝐶𝑖+1

∎

引理(Poincare引理). 设𝑀 ⊂ ℝ𝑚是包含0的星形开集: ∀𝑥 ∈ 𝑀 , ∀𝑡 ∈ (0, 1), 𝑡𝑥 ∈ 𝑀 . 则𝐻𝑖
𝑑𝑅(𝑀) = 0, ∀𝑖 ≥ 1，

且𝐻0
𝑑𝑅(𝑀) ≅ ℝ.

证明：构造𝐼𝑖 : 𝐴𝑖(𝑀) → 𝐴𝑖−1(𝑀), s.t. 𝑑 ∘ 𝐼𝑖 + 𝐼𝑖+1 ∘ 𝑑 = id𝐴𝑖(𝑀), 这样即可证明闭形式都是恰当形式. (𝑤 ∈ 𝐴𝑖(𝑀)闭，𝑑𝑤 =
0, 取𝛼 = 𝐼𝑖𝑤, 则𝑑𝛼 = 𝑤, 即𝑤是恰当形式. 这对应同调群中，ker(𝑑𝑖) = Im(𝑑𝑖−1)) 具体地，由线性，只需对单项式定义. 取

𝑤 ∈ 𝐴𝑟(𝑀), 𝑤 = 𝑤𝑖1⋯𝑖𝑟
𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 , 只需定义

𝐼𝑟(𝑤𝑖1⋯𝑖𝑟
𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟)(𝑥) = ∑

𝑟

𝛼=1
(−1)𝛼−1(∫

1

0
𝑤𝑖1⋯𝑖𝑟

(𝑡𝑥)𝑡𝑟−1 d𝑡)𝑥𝑖𝛼𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝛼 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 . (46)
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从而代入定义得

𝑑𝐼𝑟(𝑤) = 𝑟(∫
1

0
𝑤𝑖1⋯𝑖𝑟

(𝑡𝑥)𝑡𝑟−1 d𝑡)𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟

+ ∑
𝑟

𝑗=1
∑

𝑟

𝛼=1
(−1)𝛼−1(∫

1

0

𝜕𝑤𝑖1⋯𝑖𝑟

𝜕𝑥𝑗 (𝑡𝑥)𝑡𝑟−1 d𝑡)𝑥𝑖𝛼𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝛼 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟

(47)

𝐼𝑟+1(𝑑𝑤) = 𝐼𝑟+1(∑
𝑛

𝑗=1

𝜕𝑤𝑖1⋯𝑖𝑟

𝜕𝑥𝑗 𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟)

= ∑
𝑛

𝑗=1
(∫

1

0

𝜕𝑤𝑖1⋯𝑖𝑟

𝜕𝑥𝑗 (𝑡𝑥)𝑡𝑟−1 d𝑡)(𝑥𝑗𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 + ∑
𝑛

𝛼=1
(−1)𝛼𝑥𝑖𝛼𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝛼 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟)

(48)

于是两式的最后一项可以消去，得到

𝑑𝐼𝑟(𝑤) + 𝐼𝑟+1(𝑑𝑤) = 𝑟(∫
1

0
𝑤𝑖1⋯𝑖𝑟

(𝑡𝑥)𝑡𝑟−1 d𝑡)𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 + ∑
𝑟

𝑗=1
(∫

1

0

𝜕𝑤𝑖1⋯𝑖𝑟

𝜕𝑥𝑗 (𝑡𝑥)𝑡𝑟−1 d𝑡 · 𝑥𝑗)𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟

= ∫
1

0

d
d𝑡

(𝑤𝑖1⋯𝑖𝑟
(𝑡𝑥)𝑡𝑟) d𝑡𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 = 𝑤𝑖1⋯𝑖𝑟

𝑑𝑥𝑖1 ∧ ⋯ ∧ 𝑑𝑥𝑖𝑟 = 𝑤.

(49)
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对于𝑖 = 0, 𝐻0
𝑑𝑅(𝑀) = {ℝ}/{0} ≅ ℝ, 因为𝑀是连通的，闭 0形式是常函数，恰当 0形式是零函数. 当𝑖 ≥ 1时，𝐻𝑖

𝑑𝑅(𝑀) =
ker(𝑑𝑖)/(Im(𝑑𝑖−1)) ≅ {0}.

∎

定理(推论). 若𝑀 ≅ ℝ𝑚, 则

𝐻𝑖
𝑑𝑅(𝑀) = {0, 𝑖 ≥ 1

ℝ, 𝑖 = 0 (50)

3. Mayer-Vietoris序列

下面利用集合的分解，直接构造之前定理中的短正合列. 设𝑀 = 𝑈 ∪ 𝑉 , 𝑈, 𝑉是开集。有映射

𝑈 ∩ 𝑉 ⇉
𝜕0

𝜕1

𝑈 ⊔ 𝑉 →
𝜋

𝑀，其中𝜕0(𝑥) = 𝑥 ∈ 𝑉 , 𝜕1(𝑥) = 𝑥 ∈ 𝑈分别是嵌入. 下面的图更加清楚.
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𝜋

𝜋𝜕0

𝜕1

𝑈 ∩ 𝑉

𝑈

𝑉

𝑈 ∪ 𝑉

定理(MV序列). 转换范畴。取 De Rham复形，形成短正合列。注意这里是自然拉回，即限制映射.

𝐴𝑟(𝑀) →
𝜋∗

𝐴𝑟(𝑈) ⊕ 𝐴𝑟(𝑉 ) →
𝜕∗

0−𝜕∗
1
𝐴𝑟(𝑈 ∩ 𝑉 )

𝑤 ↦
𝑖

(𝑤|𝑈 , 𝑤|𝑉 ) = (𝜎, 𝜏) ↦
𝛿

(𝜎|𝑈∩𝑉 − 𝜏|𝑈∩𝑉 )
(51)

上述序列在每个𝑟处正合.

证明：令𝑖 = 𝜋∗, 𝛿 = 𝜕∗
0 − 𝜕∗

1. 只需证 i) 𝑖单的(显然)，ii) 𝛿满的，iii) Im𝑖 = ker 𝛿 (Im(𝑖) ⊂ ker 𝛿显然，反之取𝑤 s.t. 𝑤|𝑈 =
𝜎, 𝑤|𝑉 = 𝜏即证). 注意上述𝛿的定义保证了性质 iii的像集包含于零空间.

对于 ii) 取单位分解1 = 𝜑𝑈 + 𝜑𝑉 , supp𝜑𝑈 ⊂ 𝑈, supp𝜑𝑉 ⊂ 𝑉 . ∀𝛼 ∈ 𝐴𝑟(𝑈 ∩ 𝑉 ), 𝜑𝑈𝛼零延拓到了𝑉上的形式,即𝜑𝑈𝛼 ∈ 𝐴𝑟(𝑉 ). 
同理−𝜑𝑉 𝛼 ∈ 𝐴𝑟(𝑈). 则𝛿(𝜑𝑉 𝛼, −𝜑𝑈𝛼) = (𝜑𝑈 + 𝜑𝑉 )𝛼 = 𝛼.

∎
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由上述命题得长正合列

0 → 𝐻0
𝐷𝑅(𝑀) →

𝑖
𝐻0

𝐷𝑅(𝑈) ⊕ 𝐻0
𝐷𝑅(𝑉 ) →

𝛿
𝐻0

𝐷𝑅(𝑈 ∩ 𝑉 ) →
𝑑∗

→
𝑑∗

𝐻1
𝐷𝑅(𝑀) → …

(52)

值得留意的是，这里的𝑑∗映射的表达式可以显式写出来.

闭形式不一定是恰当形式，从这里，可得生成元（𝐻𝑟
𝑑𝑅(𝑀)的非零元）. 这里非零可以从积分非

零推出.

例(𝑆𝑛上的形式). 证明

𝐻𝑘(𝑆𝑛) ≅ {ℝ, 𝑘 = 0 or 𝑛
0, else . (53)

下面将上面的两覆盖的概念推广至多个覆盖. 称{𝑈𝑖}是𝑀的好覆盖，若非空𝑈𝑖1
∩ ⋯ ∩ 𝑈𝑖𝑘

≃
ℝ𝑚(1 ≤ 𝑘 ≤ 𝑛). 特别地，可以构造两两之间相交连通的好覆盖.

定理(好覆盖定理). 设𝑀有好的覆盖，则dim 𝐻𝑞
𝑑𝑅(𝑀) < ∞, ∀0 ≤ 𝑞 ≤ 𝑚.
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证明：对𝑘归纳证明dim 𝐻𝑞
𝑑𝑅(𝑈𝑖1

∪ ⋯ ∪ 𝑈𝑖𝑘
) < ∞. 定理成立.

𝑘 = 1, 则𝑀 = 𝑈1 ≃ ℝ𝑚, 由 Poincare引理，𝐻𝑞
𝑑𝑅(𝑀) = 0, ∀𝑞 ≥ 1, 𝐻0

𝑑𝑅(𝑀) ≃ ℝ.

𝑘 → 𝑘 + 1, 设𝑉 = ∪𝑘
𝑗=1 𝑈𝑖𝑗

, 则𝑀 = 𝑈𝑖𝑘+1
∪ 𝑉 . 由归纳假设，dim 𝐻𝑞

𝑑𝑅(𝑉 ) < ∞, ∀𝑞 ≥ 0. 由MV序列

… → 𝐻𝑞−1
𝑑𝑅 (𝑈𝑖𝑘+1

∩ 𝑉 ) → 𝐻𝑞
𝑑𝑅(𝑀) → 𝐻𝑞

𝑑𝑅(𝑈𝑖𝑘+1
) ⊕ 𝐻𝑞

𝑑𝑅(𝑉 ) → 𝐻𝑞
𝑑𝑅(𝑈𝑖𝑘+1

∩ 𝑉 ) → … (54)

由归纳假设，dim 𝐻𝑞−1
𝑑𝑅 (𝑈𝑖𝑘+1

∩ 𝑉 ) < ∞ ((𝑈𝑖𝑘+1
∩ 𝑈𝑖1

) ∪ ⋯ ∪ (𝑈𝑖𝑘+1
∩ 𝑈𝑖𝑘

)是好覆盖 ), dim 𝐻𝑞
𝑑𝑅(𝑈𝑖𝑘+1

∩ 𝑉 ) < ∞. 也由归纳

假设，𝐻𝑞
𝑑𝑅(𝑈𝑖𝑘+1

) ⊕ 𝐻𝑞
𝑑𝑅(𝑉 )也是有限维的. 由正合列的性质，dim 𝐻𝑞

𝑑𝑅(𝑀) < ∞.

∎

定理(推论). 若𝑀紧致，则dim 𝐻𝑞
𝑑𝑅(𝑀) < ∞, ∀0 ≤ 𝑞 ≤ 𝑚. 𝑀有好的覆盖.

4.同伦

下面给出一个稍微比同胚弱一点，但足以保持正合列的概念——同伦.

定义(同伦). 设𝑓0, 𝑓1 : 𝑀 → 𝑁是𝐶∞映射，称𝑓0, 𝑓1是𝐶∞同伦的，若∃𝐹 : 𝑀 × ℝ → 𝑁为𝐶∞映射，𝐹(·, 0) =
𝑓0,𝐹 (·, 1) = 𝑓1.

定理(同伦映射诱导了同构). 设𝑓0, 𝑓1是光滑同伦的，则[𝑓∗
0 ] = [𝑓∗

1 ] : 𝐻𝑖
𝑑𝑅(𝑁) → 𝐻𝑖

𝑑𝑅(𝑀).
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为了证明上述定理，我们需要引入链同伦的概念.

定义(链同伦). 设𝑓 ⋅, 𝑔⋅ : 𝐴⋅ → 𝐵⋅是两个链映射，称𝑓, 𝑔是链同伦，若存在一族线性映射𝐻𝑖 : 𝐴𝑖 → 𝐵𝑖−1, s.t. 

𝑓 𝑖 − 𝑔𝑖 = 𝑑𝑖−1 ∘ 𝐻𝑖 − 𝐻𝑖+1 ∘ 𝑑𝑖.

𝑓 𝑖 − 𝑔𝑖

𝑑

𝑑

𝑑

𝑑

𝐻𝑖

𝐻𝑖+1

𝐴𝑖−1

𝐵𝑖−1

𝐴𝑖

𝐵𝑖

𝐴𝑖+1

𝐵𝑖+1

定理(链同伦诱导的等价类). 设𝑓, 𝑔是链同伦的，则[𝑓] = [𝑔].

证明： 即证[𝑓 𝑖] = [𝑔𝑖] : 𝐻𝑖(𝐴⋅) → 𝐻𝑖(𝐵⋅). ∀[𝑎] ∈ 𝐻𝑖(𝐴⋅), 𝑑𝑎 = 0. 由定义[𝑓 𝑖]([𝑎]) = [𝑓 𝑖(𝑎)], [𝑔𝑖]([𝑎]) = [𝑔𝑖(𝑎)]. 由链同伦定
义，𝑓 𝑖(𝑎) − 𝑔𝑖(𝑎) = 𝑑(𝐻𝑖(𝑎)) − 𝐻𝑖+1(𝑑𝑎) = 𝑑(𝐻𝑖𝑎), 故[𝑓 𝑖(𝑎)] = [𝑔𝑖(𝑎)].

∎

下面给出命题的证明。
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引理(找出链同伦中的𝐻). 定义

𝜋 : ℝ𝑛 × ℝ → ℝ𝑛, (𝑥, 𝑡) ↦ 𝑥,
𝑠 : ℝ𝑛 → ℝ𝑛 × ℝ, 𝑥 ↦ (𝑥, 0).

(55)

则∃线性𝐾 : 𝐴𝑖(ℝ𝑛 × ℝ) → 𝐴𝑖−1(ℝ𝑛 × ℝ)满足id −𝜋∗ ∘ 𝑠∗ = ±𝑑𝐾 ± 𝐾𝑑. 即𝑠∗ ∘ 𝜋∗ = 𝜋∗ ∘ 𝑠∗ = id

证明：ℝ𝑛 × ℝ上的外形式可写成如下两种形式的线性组合 i) 𝜋∗(𝜑)𝑓(𝑥, 𝑡), 𝜑 ∈ 𝐴𝑟(ℝ𝑛), ii) 𝜋∗(𝜓) ∧ 𝑓(𝑥, 𝑡)𝑑𝑡, 𝜓 ∈ 𝐴𝑟−1(ℝ𝑛).

令 i) 𝐾(𝜋∗(𝜑)𝑓(𝑥, 𝑡)) = 0, ii) 𝐾(𝜋∗(𝜓) ∧ 𝑓(𝑥, 𝑡)𝑑𝑡) = 𝜋∗(𝜓)(∫𝑡
0

𝑓(𝑥, 𝑠)𝑑𝑠). 验证即可.

i) 𝑤 = 𝜋∗(𝜑)𝑓(𝑥, 𝑡), 则𝑑𝑤 = 𝑑(𝜋∗(𝜑))𝑓(𝑥, 𝑡) + (−1)𝑟𝜋∗(𝜑) ∧ 𝑑𝑓(𝑥, 𝑡). 𝐾(𝑑𝑤) = (−1)𝑟𝜋∗(𝜑) ∫𝑡
0

𝜕𝑓(𝑥,𝑠)
𝜕𝑠 𝑑𝑠 =

(−1)𝑟𝜋∗(𝜑)(𝑓(𝑥, 𝑡) − 𝑓(𝑥, 0)) = (−1)𝑟(𝑤 − 𝜋∗ ∘ 𝑠∗𝑤). 𝐾𝑤 = 0, 故𝑑(𝐾𝑤) = 0. 于是𝑑(𝐾𝑤) + 𝐾(𝑑𝑤) = (−1)𝑟(𝑤 − 𝜋∗ ∘ 𝑠∗𝑤).

ii) 𝑤 = 𝜋∗𝜓 ∧ 𝑓(𝑥, 𝑡)𝑑𝑡. 则𝑑(𝐾𝑤) = 𝑑𝜋∗(𝜓) ∫𝑡
0

𝑓(𝑥, 𝑠)𝑑𝑠 + (−1)𝑟−1𝜋∗(𝜓) ∧ [∫𝑡
0

𝜕𝑓(𝑥,𝑠)
𝜕𝑥 𝑑𝑠]𝑑𝑥 + (−1)𝑟−1𝜋∗(𝜓) ∧ 𝑓(𝑥, 𝑡)𝑑𝑡, 而

𝑑𝑤 = 𝜋∗(𝑑𝜓) ∧ 𝑓(𝑥, 𝑡)𝑑𝑡 + (−1)𝑟−1𝜋∗(𝜓) ∧ 𝜕𝑓(𝑥,𝑡)
𝜕𝑥 𝑑𝑥 ∧ 𝑑𝑡, 从而𝐾(𝑑𝑤) = 𝜋∗(𝑑𝜓) ∫𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠 + (−1)𝑟−1𝜋∗(𝜓) ∧

𝑑𝑥 ∫𝑡
0

𝜕𝑓(𝑥,𝑠)
𝜕𝑥 𝑑𝑠, 于是

𝑑(𝐾𝑤) − 𝐾(𝑑𝑤) = (−1)𝑟𝑤 (56)

事实上，𝑤 = (𝑑(𝐾𝑤) − 𝐾(𝑑𝑤))(−1)𝑟−1.

∎
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定理(推论). 对𝑀 × ℝ →
𝜋

𝑀 , 𝑀 →
𝑠

𝑀 × ℝ, 则[𝜋∗] : 𝐻𝑖
𝑑𝑅(𝑀) → 𝐻𝑖

𝑑𝑅(𝑀 × ℝ)以及[𝑠∗] : 𝐻𝑖
𝑑𝑅(𝑀 × ℝ) →

𝐻𝑖
𝑑𝑅(𝑀)互为逆映射.

证明：∀[𝑤] ∈ 𝐻𝑖
𝑑𝑅(𝑀 × ℝ), 可定义𝐾满足𝑤 − 𝜋∗ ∘ 𝑠∗𝑤 = 𝑑𝐾𝑤 + 𝐾𝑑𝑤, 则[id] − [𝜋∗] ∘ [𝑠∗] = 0, 同理可证[id] − [𝑠∗] ∘ [𝜋∗] = 0.

∎

命题的证明如下。

证明： 设𝑆𝑖 : 𝑀 → 𝑀 × ℝ, 𝑆𝑖(𝑝) = (𝑝, 𝑖), 𝑖 = 0, 1. 则𝑓𝑖 = 𝐹 ∘ 𝑆𝑖. 由上述引理，[𝑆∗
𝑖 ]均为[𝜋∗]的逆(𝜋 : 𝑀 × ℝ → 𝑀 ), 即[𝑆∗

0] =
[𝑆∗

1]. 从而[𝑓∗
0 ] = [𝑠∗

0 ∘ 𝐹 ∗] =函子 [𝑠∗
0] ∘ [𝐹 ∗] = [𝑠∗

1] ∘ [𝐹 ∗] = [𝑆∗
1 ∘ 𝐹 ∗] = [𝑓∗

1 ].

𝐹

𝐹𝑆0

𝑆1

𝑀
𝑀 × ℝ

𝑀 × ℝ
𝑁

∎

也可定义𝐻𝑖 : 𝐴𝑖(𝑀) → 𝐴𝑖−1(𝑁), s.t. 𝑓∗
1 − 𝑓∗

0 = ±𝑑𝐻 ± 𝐻𝑑. 这可以得到另一种证明. 目前我们还

未引入积分.
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例(ℝ𝑛 − {0}上的形式). 证明ℝ𝑛 − {0}与𝑆𝑛−1同伦等价. 从而𝐻𝑖(ℝ𝑛 − {0}) ≅ 𝐻𝑖(𝑆𝑛−1).

5. Poincare对偶

本节我们希望证明：若𝑀是可定向的紧致流形，则𝐻𝑖
𝑑𝑅(𝑀) ≃ 𝐻𝑚−𝑖

𝑑𝑅 (𝑀), 0 ≤ 𝑖 ≤ 𝑚. 证明要使

用数学归纳法。在证明之前，我们需先引入紧支集同调，即考察紧支集上的微分形式𝐴∗
𝑐(𝑀) =

{𝑤 ∈ 𝐴∗(𝑀) : supp𝑤紧}. 相应的同调群记为𝐻∗
𝑐 (𝑀).

例(简单情形). 𝐻0
𝑐 (𝑀) = 0, 𝐻1

𝑐 (𝑀) ≃ ℝ.

同样地，由之前的MV序列定义，我们有, ∀𝑤 ∈ 𝐴∗
𝑐(𝑈 ∩ 𝑉 ), 自动地，有𝑤 ∈ 𝐴∗

𝑐(𝑈), 𝐴∗
𝑐(𝑉 ). 同样

地，∀𝑤 ∈ 𝐴∗
𝑐(𝑈), 自动地有𝑤 ∈ 𝐴∗

𝑐(𝑈 ∪ 𝑉 ).

⊂

⊂⊂

⊂

𝐴∗
𝑐(𝑈 ∩ 𝑉 )

𝐴∗
𝑐(𝑈)

𝐴∗
𝑐(𝑉 )

𝐴∗
𝑐(𝑈 ∪ 𝑉 )

于是有下面的
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定理(紧支集上同调群).

0 → 𝐴∗
𝑐(𝑈 ∩ 𝑉 ) →

𝑖
𝐴∗

𝑐(𝑈) ⊕ 𝐴∗
𝑐(𝑉 ) →

𝛿
𝐴∗

𝑐(𝑈 ∪ 𝑉 ) → 0

𝑤 ↦
𝑖

(−𝑤, 𝑤), (𝜎, 𝜏) ↦
𝛿

𝜎 + 𝜏
(57)

是正合的.

证明：与之前类似. i) 𝑖单的，ii) 𝛿满的，iii) Im𝑖 = ker 𝛿. 只需注意紧支集的性质即可. 只需证ker 𝛿 ⊂ Im𝑖. ∀(𝜎, 𝜏) ∈ ker 𝛿, 𝜎 +
𝜏 = 0, 从而可知supp𝜎 = supp𝜏 ⊂ 𝑈 ∩ 𝑉 . 只需令𝑤 = 𝜏即可。

∎

上述段正合列可以诱导出长正合列

0 → 𝐻0
𝑐 (𝑈 ∩ 𝑉 ) →

𝑖
𝐻0

𝑐 (𝑈) ⊕ 𝐻0
𝑐 (𝑉 ) →

𝛿
𝐻0

𝑐 (𝑈 ∪ 𝑉 ) →
𝑑∗

→
𝑑∗

𝐻1
𝑐 (𝑈 ∩ 𝑉 ) → …

(58)

定义(正常映射). 若𝑓 : 𝑀 → 𝑁满足∀紧集𝐾 ⊂ 𝑁 , 𝑓−1(𝐾)是紧的，则称𝑓是正常映射.
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当𝑓正常映射时，其诱导了𝑓∗ : 𝐴∗
𝑐(𝑁) → 𝐴∗

𝑐(𝑀). 这是因为，给定𝑤 ∈ 𝐴∗
𝑐(𝑁), 若𝑤𝑓(𝑝) = 0, 则

(𝑓∗𝑤)𝑝 = 𝑤𝑓(𝑝) ∘ 𝑓 = 0, 从而supp (𝑓∗𝑤) ⊂ 𝑓−1(supp 𝑤). 由于𝑓是正常映射，𝑓−1(supp 𝑤)是紧
的，于是supp (𝑓∗𝑤)是紧集的闭子集，也是紧的，故𝑓∗𝑤 ∈ 𝐴∗

𝑐(𝑀).

当𝑈 →
𝑖

𝑀嵌入，是开子流形，则𝑖∗ : 𝐴∗
𝑐(𝑈) → 𝐴∗

𝑐(𝑀).

考虑上面的𝜋 : ℝ𝑛 × ℝ → ℝ𝑛, 𝜋(𝑥, 𝑡) = 𝑥来构造链同伦.

定义(𝜋的推前, 𝑒的推前). 定义𝜋∗ : 𝐴∗
𝑐(ℝ𝑛 × ℝ) → 𝐴∗−1

𝑐 (ℝ𝑛)如下

i) 𝜋∗𝜑𝑓(𝑥, 𝑡) ↦
𝜋∗

0,

ii) 𝜋∗𝜓 ∧ 𝑓(𝑥, 𝑡)𝑑𝑡 ↦
𝜋∗

𝜋∗𝜓 · (∫+∞
−∞

𝑓(𝑥, 𝑡)𝑑𝑡).

定义𝑒∗ : 𝐴∗−1
𝑐 (ℝ𝑛) → 𝐴∗

𝑐(ℝ𝑛 × ℝ)为：𝑒∗(𝜑) = 𝜑 ∧ 𝑒, 其中𝑒 ∈ 𝐴1
𝑐(ℝ), 满足∫

ℝ
𝑒 = 1.

定理(类似的𝐾的构造，应用于链同伦). ∃𝐾 : 𝐴𝑟
𝑐(ℝ𝑛 × ℝ) → 𝐴𝑟−1

𝑐 (ℝ𝑛 × ℝ)满足id −𝑒∗ ∘ 𝜋∗ = ±(𝑑𝐾 + 𝐾𝑑).

(𝜋∗ ∘ 𝑒∗)(𝜑) = 𝜋∗(𝜑 ∧ 𝑒) = 𝜑 ∫
ℝ

𝑒 = 𝜑.

证明：令𝐾 : 𝜑𝑓(𝑥, 𝑡) ↦ 0, 以及𝜑 ∧ 𝑓(𝑥, 𝑡)𝑑𝑡 ↦ 𝜑 ∫𝑡
−∞

𝑓(𝑥, 𝑠)𝑑𝑠 − 𝜑 ∫
ℝ

𝑓(𝑥, 𝑡)𝑑𝑡 ∫𝑡
−∞

𝑒

代入验证.
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∎

定理(推论). 𝜋∗, 𝑒∗给出𝐻∗
𝑐 (ℝ𝑛 × ℝ)与𝐻∗−1

𝑐 (ℝ𝑛)的同构. 从而

{𝐻1
𝑐 (ℝ) ≅ ℝ

𝐻0
𝑐 (ℝ) = 0 ⇒ {𝐻2

𝑐 (ℝ2) ≅ 𝐻1
𝑐 (ℝ) ≅ ℝ

𝐻1
𝑐 (ℝ2) ≅ 𝐻0

𝑐 (ℝ) = 0 ⇒ ⋯ ⇒ 𝐻𝑘
𝑐 (ℝ𝑛) ≅ {ℝ, 𝑘 = 𝑛

0, 𝑘 ≠ 𝑛 (59)

定理(推论). 上述𝐾的构造关于𝜑是线性的，从而𝐻∗
𝑐 (𝑀 × ℝ) ≅ 𝐻∗−1

𝑐 (𝑀)

定义(配对映射). 设𝑀是可定向的紧致𝑚 −流形(𝑀 = ∪𝑁
𝑖=1 𝑈𝑖.)，定义配对 𝐻𝑞

𝑑𝑅(𝑀) × 𝐻𝑚−𝑞
𝑐 (𝑀) → ℝ为

([𝛼], [𝛽]) ↦ ∫
𝑀

𝛼 ∧ 𝛽. (60)

这是良定义的. ∀𝛼1 − 𝛼2 = 𝑑𝛾, ∫
𝑀

(𝛼1) ∧ 𝛽 − ∫
𝑀

𝛼2 ∧ 𝛽 = ∫
𝑀

𝑑𝛾 ∧ 𝛽 = ∫
𝑀

𝑑(𝛾 ∧ 𝛽) − 𝛾 ∧ 𝑑𝛽⏟
=0

=不带边 0, ∀𝛽1 −

𝛽2 = 𝑑𝑤, supp 𝑤紧, ∫
𝑀

𝛼 ∧ 𝛽1 − ∫
𝑀

𝛼 ∧ 𝛽2 = ∫
𝑀

𝛼 ∧ 𝑑𝑤 = ± ∫
𝑀

𝑑(𝛼 ∧ 𝑤) =
𝑤|𝜕𝑀=0

0.

引理(双线性形式自然诱导的同构). 设𝑉 , 𝑊是有限维的向量空间，𝜃 : 𝑉 × 𝑊 → ℝ双线性，设∀𝑣 ≠ 0, ∃𝑤 ∈
𝑊 , 𝜃(𝑣, 𝑤) ≠ 0(保证了𝑓单射), 以及反过来∀𝑤 ≠ 0, ∃𝑣 ∈ 𝑉 , 𝜃(𝑣, 𝑤) ≠ 0. 则𝜃是非退化的，其诱导了同构𝑓 :
𝑉 →∼ 𝑊 ∗, 𝑓(𝑣)(𝑤) ≔ 𝜃(𝑣, 𝑤).
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定理(由配对映射诱导的同构). 上述定义的配对映射是非退化的，从而其诱导了𝐻𝑞
𝑑𝑅(𝑀) ≅ (𝐻𝑚−𝑞

𝑐 (𝑀))∗. 特
别地，若𝑀紧致，则𝐻𝑞

𝑑𝑅(𝑀) ≅ (𝐻𝑚−𝑞
𝑑𝑅 (𝑀))∗ ≅ 𝐻𝑚−𝑞

𝑑𝑅 (𝑀).

证明：归纳法. 记𝑀 = ∪𝑁
𝑖=1 𝑈𝑖, 𝑈 = ∪𝑘

𝑖=1 𝑈𝑖, 𝑉 = 𝑈𝑘+1. 对𝑘归纳.

i) 𝑘 = 1. 已成立.

ii) 𝑘 → 𝑘 + 1. 设𝑊 = 𝑈 ∩ 𝑉 . 由MV序列，有下列交换图:

𝛼 𝛽 𝛾 𝛿 𝜂

𝐻𝑞−1
𝑑𝑅 (𝑈) ⊕ 𝐻𝑞−1

𝑑𝑅 (𝑉 ) 𝐻𝑞−1
𝑑𝑅 (𝑈 ∩ 𝑉 ) 𝐻𝑞

𝑑𝑅(𝑈 ∪ 𝑉 ) 𝐻𝑞
𝑑𝑅(𝑈) ⊕ 𝐻𝑞

𝑑𝑅(𝑉 ) 𝐻𝑞
𝑑𝑅(𝑈 ∩ 𝑉 )

(𝐻𝑚−𝑞+1
𝑐 (𝑈) ⊕ 𝐻𝑚−𝑞+1

𝑐 (𝑉 ))∗ (𝐻𝑚−𝑞+1
𝑐 (𝑈 ∩ 𝑉 ))∗ (𝐻𝑚−𝑞

𝑐 (𝑈 ∪ 𝑉 ))∗ (𝐻𝑚−𝑞
𝑐 (𝑈) ⊕ 𝐻𝑚−𝑞

𝑐 (𝑉 ))∗ (𝐻𝑚−𝑞
𝑐 (𝑈 ∩ 𝑉 ))∗

由归纳假设，𝛼, 𝛽, 𝛿, 𝜂均为同构. 由五引理，𝛾也是同构.

∎

需要下面的引理.

引理(可交换).
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𝐻𝑞
𝑑𝑅(𝑈 ∪ 𝑉 ) 𝐻𝑞

𝑑𝑅(𝑈) ⊕ 𝐻𝑞
𝑑𝑅(𝑉 ) 𝐻𝑞

𝑑𝑅(𝑈 ∩ 𝑉 ) 𝐻𝑞
𝑑𝑅(𝑈 ∪ 𝑉 )

⊗ ⊗ ⊗ ⊗
𝐻𝑚−𝑞

𝑐 (𝑈 ∪ 𝑉 ) 𝐻𝑚−𝑞
𝑐 (𝑈) ⊕ 𝐻𝑚−𝑞

𝑐 (𝑉 ) 𝐻𝑚−𝑞
𝑐 (𝑈 ∩ 𝑉 ) 𝐻𝑚−𝑞−1

𝑐 (𝑈 ∪ 𝑉 )

↓
ℝ

↓
ℝ

↓
ℝ

↓
ℝ

是可交换的图表.

引理(5).

𝛼 𝛽 𝛾 𝛿 𝜂
𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5

行正合，若𝛼, 𝛽, 𝛿, 𝜂是同构，则𝛾也是同构.

记𝑏𝑞 = dimℝ 𝐻𝑞
𝑑𝑅(𝑀), 则𝑏𝑞 = 𝑏𝑐

𝑚−𝑞.

例(). 设𝑀是紧流形，𝛼是𝑀上的1形式，对所有光滑映射𝑓 : 𝑆1 → 𝑀 , 有∫
𝑆1 𝑓∗𝛼 = 0, 证明𝛼是恰当的.
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6.映射度

设𝑀, 𝑁是可定向连通的紧致𝑚 −流形，由 Poincare对偶，𝐻𝑚
𝑑𝑅(𝑀) ≅ 𝐻0

𝑑𝑅(𝑀) ≅ ℝ, 其生成元

[𝑤], ∫
𝑀

𝑤 = 1.

设𝑓 : 𝑀 → 𝑁是光滑映射，则𝑓∗ : 𝐻𝑚
𝑑𝑅(𝑁) → 𝐻𝑚

𝑑𝑅(𝑀), 任取𝛼 ∈ 𝐴𝑚(𝑀), ∫
𝑁

𝛼 = 1. 称 ∫
𝑀

𝑓∗𝛼 ∈
ℝ是𝑓的映射度(degree of map).

事实上[𝑓∗𝛼] = deg(𝑓)[𝑤] ⇔ ∫
𝑀

𝑓∗𝛼 − (deg 𝑓𝑤) = 0 ⇔ ∫
𝑀

𝑓∗𝛼 = deg 𝑓 .

定理(). deg 𝑓 ∈ ℤ.

对𝑓 : 𝑀 → 𝑁 , 𝑝 ∈ 𝑀称为𝑓的正则点，若𝑓∗𝑝是同构. 𝑞 ∈ 𝑁称为𝑓的正则值，若∀𝑝 ∈ 𝑓−1(𝑞), 𝑝是𝑓
的正则点.

当𝑞是正则值时，𝑓−1(𝑞)是𝑀的离散子集，（紧集下）是有限集.

证明：取𝑓正则值𝑞，则𝑓−1(𝑞) = {𝑝1, ⋯, 𝑝𝑘}, 每个𝑝𝑖处有开域𝑈𝑖, s.t. 𝑓(𝑈𝑖)为𝑞处开邻域，且𝑓 : 𝑈𝑖 → 𝑓(𝑈𝑖)是同胚. 取𝑉 ⊂ 𝑁为
𝑞处开邻域，s.t. 𝑓−1(𝑉 ) = ∪𝑘

𝑖=1 𝑈𝑖. 取𝛼 ∈ 𝐴𝑚(𝑁), supp𝛼 ⊂ 𝑉 , ∫
𝑁

𝛼 = 1. 则 ∫
𝑀

𝑓∗𝛼 = ∑𝑘
𝑖=1 ∫

𝑈𝑖
𝑓∗𝛼 = 𝑘, 故映射度为整数.

∎
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映射度和多项式的关系. 设𝑓(𝑧) = ∑𝑛
𝑖=0 𝑎𝑛𝑧𝑛, 𝑎𝑖 ∈ ℂ, 𝑎𝑛 ≠ 0. 将𝑓延拓𝑓 : 𝑆2 = ℂ ∪ {∞} → 𝑆2, 

且𝑓(∞) = ∞, 则deg(𝑓) = 𝑛.

定理(). 设𝑓 : 𝑀 → 𝑁是光滑映射，则𝑆 = {𝑞 ∈ 𝑁 : 𝑞不是正则值}为零测集.

证明：记𝐴 = {𝑝 ∈ 𝑀 : 𝑝不是正则点}，𝑆 = 𝑓(𝐴)

取坐标卡覆盖𝑀 = ∪∞
𝑖=1 𝑈𝑖, 𝑁 = ∪∞

𝑖−1 𝑉𝑖, 且𝑓(𝑈𝑖) ⊂ 𝑉𝑖 （可数多个可数的并仍可数）. 𝐴 = ∪∞
𝑖=1 (𝐴 ∩ 𝑈𝑖), 只需证明𝑓(𝐴 ∩ 𝑈𝑖)

是零测的.

设𝑓 : 𝑈(⊂ ℝ𝑚) → ℝ𝑛是光滑映射. 记Crit(𝑓) = {𝑥 ∈ 𝑈 : rank 𝐷𝑓(𝑥) < 𝑛}.

i) 若 𝑚 < 𝑛, 则Crit(𝑓) = 𝑈 , 故𝑓(𝑈)是零测的. (使用覆盖就可以了)

ii) 先证明𝑚 = 𝑛情形. Crit(𝑓) = {𝑥 ∈ 𝑈 : det 𝐷𝑓(𝑥) = 0}. 设𝑈 = (−1, 1)𝑚，𝐶𝑟 = (−𝑟, 𝑟)𝑚, 𝑟 < 1. 𝐶𝑟是𝑈的紧子集，只需证
明𝑓(Crit(𝑓) ∩ 𝐶𝑟)是零测的. 对𝑓(Crit(𝑓) ∩ 𝐶𝑟)是零测的.

将𝐶𝑟划分成边长为𝛿的共(2𝑟
𝛿)𝑚
个立方体，挑出与Crit(𝑓)相交的小立方体，记为𝐼𝑗. ∃𝑥𝑗 ∈ 𝐼𝑗, det 𝐷𝑓(𝑥𝑗) = 0. ∀𝑥 ∈ 𝐼𝑗, 

|𝑓(𝑥) − (𝑓(𝑥𝑗) + 𝐷𝑓(𝑥𝑗)(𝑥 − 𝑥𝑗))| ≤ 𝑂(|𝑥 − 𝑥𝑗|
2) ≤ 𝐶𝛿2.

由于𝐷𝑓(𝑥𝑗)退化，Im(𝐷𝑓(𝑥𝑗))是𝑚 − 1维子空间（若更小则可以扩张），注意到|𝐷𝑓(𝑥𝑗)(𝑥 − 𝑥𝑗)| ≤ 𝐶𝛿, 则𝑓(𝐼𝑗)包含在一个
底面为𝐶𝛿的𝑚 − 1维矩体，高为𝐶𝛿2的区域. conger |𝑓(𝐼𝑗)| ≤ (𝐶𝛿)𝑚−1𝐶𝛿2 = 𝐶𝛿𝑚+1.

从而|𝑓(Crit(𝑓) ∩ 𝐶𝑟)| ≤ ∑𝐼𝑗∩ Crit(𝑓)≠∅|𝑓(𝐼𝑗)| ≤ 𝐶𝛿𝑚+1((2𝑟)/𝛿)𝑚 =≤ 𝐶𝛿.
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iii) 一般地𝑚 > 𝑛, 对𝑚归纳. 令𝐴1(𝑥) = {𝑥 ∈ 𝑈 : 𝐷𝑓(𝑥) = 0 ⇔ 𝜕𝑓𝑖

𝜕𝑥𝑗 = 0} ⊂ Crit(f). 𝐴𝑘 = {𝑥 ∈ 𝑈 : 𝜕𝑘𝑓
𝜕𝑥𝛼1⋯𝑥𝛼𝑚 (𝑥) =

0, ∑𝑚
𝑖=1|𝛼𝑖| ≤ 𝑘}

则Crit(𝑓) ⊃ 𝐴1 ⊃ 𝐴2 ⊃ ⋯. 由归纳假设，只需证

1) 𝑓(Crit(𝑓) − 𝐴1)是零测的. 𝑥0 ∈ Crit(𝑓) − 𝐴1, 则𝑥0在某一个维度偏导数不为0. 不妨𝜕𝑓1

𝜕𝑥1 (𝑥0) ≠ 0. 令ℎ(𝑥) =
(𝑓1(𝑥), 𝑥2, ⋯, 𝑥𝑚), 则𝐷ℎ(𝑥0) = (

𝜕𝑓1
𝜕𝑥1 (𝑥0)

0
∗

𝐼𝛼
)非退化. 由反函数定理，有𝑥0的开邻域𝑉 , s.t. ℎ(𝑉 ) = 𝑉 ′是开集，ℎ : 𝑉 → 𝑉 ′是

光滑同胚. 令𝑔 = 𝑓 ∘ ℎ−1 : 𝑉 ′ → ℝ𝑛. 易知𝑔 Crit(𝑔) = 𝑓(Crit(𝑓) − 𝐴1)

∀(𝑡, 𝑥2, ⋯, 𝑥𝑚) ∈ 𝑉 ′, 𝑔(𝑡, 𝑥2, ⋯, 𝑥𝑚) = (𝑡, )

2)

3) 只需证明∀𝑘, 𝑘 > 𝑛
𝑚 − 1, 𝑓(𝐴𝑘 − 𝐴𝑘+1)是零测的. 这里的证明类似. 𝐴𝑘 ∩ 𝐼𝑗 ≠ ∅, ∀𝑥 ∈ 𝐼𝑗, |𝑓(𝑥) − 𝑓(𝑥𝑗)| ≤ 𝑂(|𝑥 − 𝑥𝑗|

𝑘+1), 

从而|𝑓(𝐼𝑗)| ≤ (𝐶𝛿𝑘+1)𝑛
. 于是|𝑓(𝐴𝑘 ∩ 𝐶𝑟)| ≤ ∑𝐼𝑗∩𝐴𝑘≠∅|𝑓(𝐼𝑗)| ≤ 𝐶𝛿(𝑘+1)𝑛((2𝑟)/𝛿)𝑚 =≤ 𝐶𝛿((𝑘+1)𝑛−𝑚.

∎
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