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1 欧式空间的映射

Suppose 𝑈 ⊂ ℝ𝑛 is an open set, 𝐹 : 𝑈 → ℝ𝑚, defined by 𝐹(𝑥) = 𝑦, where 𝑥 = (𝑥1, ⋯, 𝑥𝑛), 𝑦 =
(𝑦1, ⋯, 𝑦𝑚). Use 𝜋𝛼 : ℝ𝑛 → ℝ to be the projection to the 𝛼-th coordinate, i.e. 𝜋𝛼(𝑥1, ⋯, 𝑥𝑛) = 𝑥𝛼. 

Then 𝑦 = 𝐹(𝑥) could be represented as

𝑦 = 𝐹(𝑥) = (𝑓1(𝑥),⋯, 𝑓𝑛(𝑥)), 𝑥 ∈ 𝑈 (1)

where 𝑓𝛼 = 𝜋𝛼 ∘ 𝐹 : 𝑈 → ℝ, which is called the component function.

If each component function of 𝐹  is partialerentiable (𝐶𝑘, 𝐶∞, 𝐶𝜔) at 𝑎 ∈ 𝑈 , then we call 𝐹  is 

partialerentiable (𝐶𝑘, 𝐶∞, 𝐶𝜔) at 𝑎 ∈ 𝑈 .

If 𝐹  is partialerentiable on 𝑈 , then

𝜕(𝑓1, ⋯, 𝑓𝑚)
𝜕(𝑥1, ⋯, 𝑥𝑛)

=

[



𝜕𝑓1
𝜕𝑥1
⋮

𝜕𝑓𝑚
𝜕𝑥1

⋯
⋱
⋯

𝜕𝑓1
𝜕𝑥𝑛
⋮

𝜕𝑓𝑚
𝜕𝑥𝑛 ]





(2)
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whose each element is a function on 𝑈 . We call the above matrix Jacobi matrix, denoted 𝐷𝐹 . When 𝐹  

is 𝐶𝑘, 𝐷𝐹  is 𝐶𝑘−1.

The following theorem is parallel to that in one-variable function.

定理. Suppose 𝑈 ⊂ ℝ𝑛 is an open set, map 𝐹 : 𝑈 → ℝ𝑚 is partialerentiable, iff there exsits a linear map 𝐴 : ℝ𝑛 →
ℝ𝑚 and 𝑅(𝑥, 𝑎) = (𝑟1(𝑥, 𝑎),⋯, 𝑟𝑚(𝑥, 𝑎)) such that

𝐹(𝑥) = 𝐹(𝑎) + 𝐴(𝑥 − 𝑎) + ∥ 𝑥 − 𝑎 ∥ 𝑅(𝑥, 𝑎), lim
𝑥→𝑎

∥ 𝑅(𝑥, 𝑎) ∥= 0. (3)

证明：

∎

From the proof, we could know that the above 𝐴 could be denoted by 𝐷𝐹(𝑎).

Suppose 𝑈, 𝑉  are open subsets of ℝ𝑛, ℝ𝑚, maps 𝐹 : 𝑈 → 𝑉 , 𝐺 : 𝑉 → ℝ𝑝, then the map 𝐻 = 𝐺 ∘ 𝐹 :
𝑈 → ℝ𝑝 is called the composition of 𝐹  and 𝐺. Parallel to the composition of one-variable functions, 

we have the following chain rules.
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定理(Chain rules). Suppose 𝐹,𝐺,𝐻  are defined as above. If 𝐹  is partialerentiable at 𝑎 ∈ 𝑈 , and 𝐺 is 

partialerentiable at 𝐹(𝑎) ∈ 𝑉 , then 𝐻  is partialerentiable at 𝑎 and holds the following equation.

𝐺𝐻(𝑎) = 𝐷𝐺(𝐹(𝑎)) ⋅ 𝐷𝐹(𝑎). (4)

证明：By definitions.

∎

Readers could prove that if 𝐹  and 𝐺 are 𝐶𝑘 maps, then 𝐻 = 𝐺 ∘ 𝐹  is also a 𝐶𝑘 map.

Example. Suppose 𝐹 : ℝ𝑚 → ℝ𝑚 is a homogeneous linear transformation, i.e. 

𝐹(𝑥) = 𝐴 ⋅ 𝑥, 𝑥 ∈ ℝ𝑚 (5)

or

𝑓 𝑖 =∑
𝑚

𝑗=1
𝑎𝑖𝑗𝑥𝑗. (6)

Easy to show that 𝐷𝐹(𝑥) = 𝐴. If 𝐴 is inversible, then 𝐹  is a partialeomorphism.
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定理(Inverse function theorem). Suppose 𝑈 ⊂ ℝ𝑚 is an open set, 𝐹 : 𝑈 → ℝ𝑚 is a 𝐶𝑘 map. If for 𝑎 ∈ 𝑈 , 𝐷𝐹(𝑎) 
is inversible, then there exists an open neighborhood 𝑊 ∈ 𝑈 , such that 𝐹 : 𝑊 → 𝐹(𝑊) = 𝑉  is a 𝐶𝑘 

partialeomorphism. Furthermore, if 𝑥 ∈ 𝑊 , 𝑦 = 𝐹(𝑥), then the partialerential of 𝐹−1 at 𝑦 is

𝐷𝐹−1(𝑦) = (𝐷𝐹(𝑥))−1. (7)

Without generality, in the following proof, we assume 𝐹(0) = 0 and 𝐷𝐹(0) = 𝐼 .

引理. There exsits an open neighborhood 𝑊  of 𝑎, such that 𝐹 |𝑊 : 𝑊 → ℝ𝑚 is injective. Furthermore, for all 

𝑥, 𝑦 ∈ 𝑊 ,

2 ∥ 𝐹(𝑥) − 𝐹(𝑦) ∥≥∥ 𝑥 − 𝑦 ∥ . (8)

证明：for Lemma 1. Define 𝐺 : 𝑈 → ℝ𝑚 by 𝐺(𝑥) = 𝑥 − 𝐹(𝑥), which satisfies 𝐺(0) = 0 and 𝐷𝐺(0) = 𝟎. Since 𝐹 ∈ 𝐶1(𝑈), we 

have 𝐷𝐺(𝑥) is continuous. Therefore, there exists a real number 𝑟 > 0, such that 𝐵𝑟(0) ⊂ 𝑈  and each element of 𝐷𝐺(𝑥) is less than 

1/(2𝑚) for 𝑥 ∈ 𝐵𝑟(0). Thus

𝑇𝑟(𝐷𝐺𝑇 (𝑥)𝐷𝐺(𝑥)) ≤ 1
4𝑚2 ⋅ 𝑚

2 ≤ 1
4
,⇒∥ 𝐷𝐺(𝑥) ∥≤ 1

2
, 𝑥 ∈ 𝐵𝑟(0). (9)

For all 𝑥1, 𝑥2 ∈ 𝐵𝑟(0), by changing the partialerence into integral and chain rule
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𝐺(𝑥2) − 𝐺(𝑥1) = ∫
1

0

𝑑
𝑑𝑡
[𝐺(𝑥1 + (𝑥2 − 𝑥1)𝑡)]𝑑𝑡 = ∫

1

0
𝐷𝐺(𝑥1 + (𝑥2 − 𝑥1)𝑡)(𝑥2 − 𝑥1)𝑑𝑡 (10)

take norm and we have

∥ 𝐺(𝑥2) − 𝐺(𝑥1) ∥≤ ∫
1

0
∥ 𝐷𝐺(𝑥1 + (𝑥2 − 𝑥1)𝑡) ∥∥ 𝑥2 − 𝑥1 ∥ 𝑑𝑡 ≤ 1/2 ∥ 𝑥2 − 𝑥1 ∥ . (11)

At last, by introducing triangle inequality, we have

1/2 ∥ 𝑥2 − 𝑥1 ∥≥∥ (𝑥2 − 𝑥1) − (𝐹(𝑥2) − 𝐹(𝑥1)) ∥≥∥ 𝑥2 − 𝑥1 ∥ − ∥ 𝐹(𝑥2) − 𝐹(𝑥1) ∥ (12)

and we get the result.

∎

引理. Suppose 𝑊 ⊂ ℝ𝑚 is an open set, and map 𝐹 : 𝑊 → ℝ𝑚 which satisfies for all 𝑥 ∈ 𝑊 , 𝐷𝐹(𝑥) is inversible, 

then 𝐹(𝑊) is an open set, i.e. 𝐹  is an open map. If 𝐹  is one-to-one, then 𝐹−1 is continuous.

证明：for Lemma 2.

We only need to prove that for any 𝑎 ∈ 𝑊 , 𝐹(𝑊) is an open neighborhood of 𝐹(𝑎). To be more specific, by translation, for any ball 

𝐵𝑟(0) ⊂ 𝑊 , 𝐹(𝐵𝑟(0)) ⊂ 𝐵𝑟/2(0) ⊂ 𝐹(𝑊).
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By Lemma 1, there exists 𝑟 > 0, such that ∥ 𝐺(𝑥2) − 𝐺(𝑥1) ∥≤ 1/2 ∥ 𝑥2 − 𝑥1 ∥ for 𝑥 ∈ 𝐵𝑟(0). Let 𝑥2 = 0, 𝐺(𝑥2) = 0, and we 

have ∥ 𝐺(𝑥1) ∥≤ 1/2 ∥ 𝑥1 ∥. For a given 𝑦 ∈ 𝐵𝑟/2(0), define 𝑇 : 𝐵𝑟(0) → ℝ𝑚, by 𝑇 (𝑥) = 𝑦 − 𝐺(𝑥). Actually, since

∥ 𝑦 − 𝐺(𝑥) ∥≤∥ 𝑦 ∥ + ∥ 𝐺(𝑥) ∥≤ 𝑟/2 + 𝑟/2 = 𝑟, ∀𝑥 ∈ 𝐵𝑟(0) (13)

So 𝑇  actually maps into itself. Since ∥ 𝑇 (𝑥2) − 𝑇 (𝑥1) ∥≤∥ 𝐺(𝑥2) − 𝐺(𝑥1) ∥≤ 1/2 ∥ 𝑥2 − 𝑥1 ∥, 𝑇  is a contraction map, so there 

exists a unique fixed point 𝑥 ∈ 𝐵𝑟(0) such that 𝑇 (𝑥) = 𝑥, which means 𝑦 = 𝐹(𝑥), meaning 𝑦 ∈ 𝐹(𝑊). The above contraction map 

method is usually used to proving the solution for an equation, i.e. the range of a function.

∎

证明：for Theorem

Since 𝐷𝐹(𝑥0) is inversible, there exists an open neighborhood 𝑊  of 𝑥0 such that |𝐷𝐹(𝑥)| ≠ 0 for 𝑥 ∈ 𝑊 . By lemma 1, we have 

𝐹(𝑥) |𝑊  is injective. By lemma 3, 𝐹(𝑊) is open, so 𝐹  is a homomorphism.

Denote 𝐻  as the inverse of 𝐹 . We first show that it is 𝐶1. For any 𝑥 ∈ 𝑊 , let 𝑦 = 𝐹(𝑥), 𝑦0 = 𝐻(𝑥0), expand it at 𝑥0,we have

𝐹(𝑥) = 𝐹(𝑥0) + 𝐷𝐹(𝑥0)(𝑥 − 𝑥0) + 𝑜(∥ 𝑥 − 𝑥0 ∥),
⇒ 𝑦 = 𝑦0 +𝐷𝐹(𝐻(𝑦0))(𝐻(𝑦) − 𝐻(𝑦0)) + 𝑜(∥ 𝐻(𝑦) − 𝐻(𝑦0) ∥)

(14)

so multiply both sides 𝐷𝐹(𝑥0)
−1

 since |𝐷𝐹(𝑥0)| ≠ 0, we have

𝐻(𝑦) = 𝐻(𝑦0) + 𝐷𝐹(𝑥0)
−1(𝑦 − 𝑦0) + 𝑜(∥ 𝐻(𝑦) − 𝐻(𝑦0) ∥) (15)
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the rest item could be 𝑜(∥ 𝐻(𝑦) − 𝐻(𝑦0) ∥) = 𝑜(∥ 𝑦 − 𝑦0 ∥) since ∥ 𝑥 − 𝑥0 ∥≤ 2 ∥ 𝐹(𝑥) − 𝐹(𝑥0) ∥.

So we have 𝐷𝐻(𝑦0) = 𝐷𝐹(𝑥0)
−1

.

Now we show that 𝐻  is 𝐶𝑘. We prove by induction. Assume 𝐻  is 𝐶𝑙 for 𝑙 ≤ 𝑘 − 1, then by

𝐷𝐻 = (𝐷𝐹 ∘ 𝐻)−1 (16)

which means 𝐷𝐻  is 𝐶𝑙, thus 𝐻  is 𝐶𝑙+1. Since 𝐹  is 𝐶𝑘, we have 𝐻  is 𝐶𝑘.

∎

We have the following corollaries.

定理(Implicite function theorem). Suppose 𝑈, 𝑉  are open subsets of ℝ𝑚 and ℝ𝑛. The map 𝐹 : 𝑈 × 𝑉 → ℝ𝑛 is 

𝐶𝑘. If for 𝑥0 ∈ 𝑈 , 𝑦0 ∈ 𝑉 , and map 𝑦 ↦ 𝑓(𝑥0, 𝑦) whose partialerential at 𝑦0, i.e 𝐷2𝑓(𝑥0, 𝑦0) is inversible, then 

there exists a neighborhood 𝑈0 ⊂ 𝑈  of 𝑥0, and a uniquely determined 𝐶𝑘 map 𝑔 : 𝑈0 → ℝ𝑛, such that 𝑔(𝑥0) = 𝑦0. 

Furthermore, for each 𝑥 ∈ 𝑈0, we have

𝑓(𝑥, 𝑔(𝑥)) = 𝑓(𝑥0, 𝑦0). (17)

证明：Similar to what we have in partialerential geometry, we consider a higher dimensional map 𝐹 : 𝑈 × 𝑉 → ℝ𝑚 ×ℝ𝑛, 

(𝑥, 𝑦) → (𝑥, 𝑓(𝑥, 𝑦)), then
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𝐷𝐹(𝑥0, 𝑦0) = [ 𝐼
𝐷1𝑓(𝑥0, 𝑦0)

0
𝐷2𝑓(𝑥0, 𝑦0)

], (18)

since 𝐷2𝑓(𝑥0, 𝑦0) is inversible, 𝐷𝐹(𝑥0, 𝑦0) is inversible. Then by ;, there exists a small neighborhood 𝑈0 × 𝑉0 of (𝑥0, 𝑦0) such that 

𝐹  is its unique inverse map. Define projection 𝜋 : ℝ𝑚 ×ℝ𝑛 → ℝ𝑛, (𝑥, 𝑦) ↦ 𝑦, and let

𝑔(𝑥) = 𝜋 ∘ 𝐹−1(𝑥, 𝑓(𝑥0, 𝑦0)), 𝑥0 ∈ 𝑈0 (19)

so 𝑔 is the desired map. This is because 𝐹(𝑥, 𝑔(𝑥)) = (𝑥, 𝑓(𝑥, 𝑔(𝑥))) = (𝑥, 𝑓(𝑥0, 𝑦0)).

∎

定理(Rank Theorem). Suppose 𝐴,𝐵 is open set on ℝ𝑚, ℝ𝑛, 𝐹 : 𝐴 → 𝐵 is a 𝐶𝑘 map, and 𝐷𝐹(𝑥) = 𝑟 for all 𝑥 ∈
𝐴. Assume 𝑎 ∈ 𝐴, 𝑏 = 𝐹(𝑎) ∈ 𝐵, then there exist open neighborhood 𝐴0 ⊂ 𝐴,𝐵0 ⊂ 𝐵 of 𝐴,𝐵, and a 𝐶𝑘 

homeomorphism 𝑢 : 𝐴0 → 𝑈 ⊂ ℝ𝑚, 𝑣 : 𝐵0 → 𝑉 ⊂ ℝ𝑛, such that 𝑣 ∘ 𝐹 ∘ 𝑢−1 : 𝑈 → 𝑉  has the following form

𝑣 ∘ 𝐹 ∘ 𝑢−1(𝑥1, ⋯, 𝑥𝑚) = (𝑥1, ⋯, 𝑥𝑟, 0, ⋯, 0) ∈ ℝ𝑛. (20)
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2 微分流形

1.相容的坐标卡、坐标图册

定义(拓扑流形). 𝑀是一个𝑛维拓扑流形，若对于每一个𝑝 ∈ 𝑀 , 都存在一个开邻域𝑈 , 𝑝 ∈ 𝑈 , 以及同胚映射𝜑 :
𝑈 → ℝ𝑛, 使得𝜑(𝑈)是ℝ𝑛的开集。

一般我们假设𝑀是一个 Hausdorff空间，且满足𝐴2公理。上述的𝑈,𝜑被称为坐标卡、坐标邻域。
我们具体分析𝜑, 因为其值域为ℝ𝑛, 故可以自然地使用坐标分量表达

𝜑(𝑝) = (𝑥1(𝑝),⋯, 𝑥𝑛(𝑝)) (21)

其中𝑥𝑖 : 𝑈 → ℝ即为坐标分量函数。

下面我们讨论两个坐标卡之间的关系，并以此定义微分流形。设(𝑈, 𝜑), (𝑉 , 𝜓)是两个坐标卡，
𝑈 ∩ 𝑉 ≠ ∅, 则𝜓 ∘ 𝜑−1 : 𝜑(𝑈 ∩ 𝑉 ) → 𝜓(𝑈 ∩ 𝑉 )是欧氏空间之间的映射，可以用第一部分的原理
来解释。

定义(𝐶𝑘相容的坐标卡). 上述两个坐标卡被称为𝐶𝑘相容的，如果𝜓 ∘ 𝜑−1是𝐶𝑘同胚. 若两个坐标卡的开邻域之

间不交，则平凡地认为其是𝐶𝑘相容.

有了上述的关系，我们便可以定义微分流形。
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定义(微分流形). 设𝑀是𝑛维拓扑流形，若在𝑀上存在一族坐标卡𝒰︀ = {(𝑈𝛼, 𝜑𝛼)}𝛼∈𝐽满足

(i) 覆盖性. 𝑀 = ⋃
𝛼∈𝐽

𝑈𝛼.

(ii) 任意两个坐标卡是𝐶𝑘相容的.

(iii) 若另外有一个坐标卡(𝑈, 𝜑), 满足对任意𝛼 ∈ 𝐽 , (𝑈, 𝜑)与(𝑈𝛼, 𝜑𝛼)都𝐶𝑘相容，则(𝑈, 𝜑) ∈ 𝑈 .

于是我们称𝒰︀是𝑀上的𝐶𝑘微分结构，称(𝑀,𝒰︀)是𝑛维的微分流形. 𝒰︀中的元素被称为容许坐标卡。

我们可以证明存在唯一的最大微分结构。

定理(微分结构的唯一性). 若𝒰︀0是满足上述(i)(ii)的一族坐标卡，则存在唯一的𝐶𝑘微分结构𝒰︀ ⊃ 𝒰︀0.

例(𝑆𝑛作为流形). 证明𝑆𝑛在标准拓扑下是光滑流形.

2.流形间的映射

定义(流形间的𝐶𝑘映射). 设𝑀 , 𝑁分别是𝑚, 𝑛维𝐶𝑘流形，𝐹 : 𝑀 → 𝑁是连续映射。取𝑝 ∈ 𝑀 , 称𝐹是𝐶𝑘映射，

若存在𝑀和𝑁的坐标卡(𝑈, 𝜑)和(𝑉 , 𝜓)，使得𝑝 ∈ 𝑈 , 𝑓(𝑝) ∈ 𝑉 , 且𝑓(𝑈) ⊂ 𝑉 , 𝐹 ≔ 𝜓 ∘ 𝐹 ∘ 𝜑−1是ℝ𝑚到ℝ𝑛的𝐶𝑘

映射. 定义𝐹在𝑝处的秩为𝐹在𝜑(𝑝)处的秩.

设𝐹 : 𝑀 → 𝑁是同胚，若𝐹 , 𝐹−1都是𝐶𝑘映射，则称𝐹是𝐶𝑘同胚映射。
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若𝐹在𝑝处的秩为𝑚, 则称𝐹为浸入；若在𝑝处的秩为𝑛,则称𝐹为淹没.

特别地，我们取𝑁 = ℝ, 以及标准拓扑，则𝐹被称为𝐶𝑘函数，其全体记为𝐶𝑘(𝑀). 若取𝑀 =
(𝑎, 𝑏) ⊂ ℝ, 𝐹则被称为𝐶𝑘曲线。

例(). 设𝑀是连通流形，证明对𝑀上任意两点𝑝, 𝑞，都存在微分同胚𝜑 : 𝑀 → 𝑀 , s.t. 𝜑(𝑝) = 𝑞.

例(). 𝑀 , 𝑁是连通紧致光滑流形，𝑓 : 𝑀 → 𝑁是淹没，证明：i) 𝑓是满射. ii) ∀𝑝, 𝑞 ∈ 𝑁 , 𝑓−1(𝑞), 𝑓−1(𝑝)是微分
同胚的流形.

定理(Uryson 引理). 设𝑀是𝐶𝑘流形，𝐹,𝐾分别是闭集和紧集，𝐹 ∩𝐾 = ∅, 则存在𝐶𝑘函数𝑔满足𝑔|𝐾 = 1, 

𝑔|𝐹 = 0, 𝑔 ∈ [0, 1].

证明： 首先证明𝑀 = ℝ𝑚时命题成立. 首先对于任意给定的𝐵𝑝(𝑟)，存在径向对称函数𝑔 ∈ 𝐶∞(ℝ𝑚)，满足𝑔|𝐵𝑝(𝑟2)
≡ 1, 

𝑔|ℝ𝑚−𝐵𝑝(𝑟) ≡ 0，𝑔 ∈ [0, 1]. 具体来说，可以令

ℎ(𝑡) = {
0, 𝑡 ≤ 0
𝑒−1

𝑡 , 𝑡 > 0
, (22)

从而 lim
𝑡→0+

ℎ(𝑡) = 0, lim
𝑡→∞

ℎ(𝑡) = 1, 且是一个𝐶∞函数. 令
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𝑔(𝑥) = ℎ(𝑟 − |𝑥|)
ℎ(𝑟 − |𝑥|) + ℎ(|𝑥| − 𝑟

2)
= {1, |𝑥| < 𝑟/2

0, |𝑥| ≥ 𝑟 (23)

并且𝑔是一个𝐶∞函数.

下面利用紧集的性质. 任取𝑥 ∈ 𝐾, ∃𝑟𝑥, s.t. 𝐵𝑥(𝑟𝑥) ∩ 𝐹 = ∅. 由紧集，∃𝑥1, ⋯, 𝑥𝑁 , ⋃𝑁
𝑖=1𝐵𝑥𝑖(𝑟𝑥𝑖/2) ⊃ 𝐾. 由上面的性质，我们

有对应的𝑔𝑖满足𝑔𝑖|𝐵𝑥𝑖(𝑟𝑥𝑖/2)
= 1, 𝑔𝑖|ℝ𝑚−𝐵𝑥𝑖(𝑟𝑖)

= 0. 令𝑔 = 1 −∏𝑁
𝑖=1(1 − 𝑔𝑖). 则𝑔满足要求.

然后证明命题对于一般的情况也成立. ∀𝑥 ∈ 𝐾, 取包含𝑥的坐标卡(𝑈, 𝜓; 𝑥𝑖), 取𝑟𝑥 > 0, 使得𝐵𝜑(𝑥)(𝑟𝑥) ⊂ 𝜑(𝑈), 且
𝜑−1(𝐵𝜑(𝑥)(𝑟𝑥)) ∩ 𝐹 = ∅. 在𝐵𝜑(𝑥)(𝑟𝑥/2)上，有对应的函数𝑔𝑥满足条件，令

𝑔𝑥(𝑝) = {𝑔𝑥(𝜑(𝑝)), 𝑝 ∈ 𝑈
0, else . (24)

则𝑔𝑥是𝐶𝑘函数（注意𝑀是 Hausdorff的，从而𝜑−1(𝐵𝑥(𝑟𝑥))作为紧集是闭的. 不能由闭集的原像是闭集得到，因为这里的𝜑的
连续性是在𝑈的子空间拓扑下的.）再由𝐾是紧的，得证.

∎

特别地，𝑓 : ℝ𝑚 → ℝ𝑛, 𝑚 < 𝑛, 且𝑓(𝑥1, ⋯, 𝑥𝑚) =
(


𝑥1, ⋯, 𝑥𝑚, 0, ⋯, 0⏟

𝑛−𝑚个 )


被称为典则浸入

(Canonical immersion).
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定义(浸入子流形). 设𝐹 : 𝑀 → 𝑁是单浸入，则称𝑀或𝐹(𝑀)是𝑁的浸入子流形.

注意这里单射是保证了全局单的性质。读者可证浸入能够保证局部单的性质，从而局部上，根

据子空间拓扑，𝐹是同胚。

定义(正则子流形). 设𝑁是𝑛维𝐶𝑘流形，𝑀 ⊂ 𝑁，若对任意𝑝 ∈ 𝑀 , 存在𝑁的坐标卡(𝑉 , 𝜓), 𝑝 ∈ 𝑉 , 使得𝜓(𝑝) =
0, 𝜓(𝑉 ∩𝑀) = {(𝑦1, ⋯, 𝑦𝑛) ∈ 𝜓(𝑉 ) : 𝑦𝑚+1 = ⋯ = 𝑦𝑛 = 0}, 则称𝑀是𝑁的𝑚维正则子流形.

对于正则子流形，我们可以得到其对应的坐标图册。

定理(正则子流形的坐标图册). 基于上述定义的正则子流形𝑀 , (𝑉 ∩𝑀,𝜓|𝑉 ∩𝑀)是𝑀上𝐶𝑘相容的坐标图册.

特别地，若𝐹 : 𝑀 → 𝑁是𝐶𝑘映射，定义图像𝑔𝑟(𝐹) = {(𝑝, 𝐹(𝑝)) ∈ 𝑀 ×𝑁 : 𝑝 ∈ 𝑀}, 则其是𝑀 ×
𝑁的𝑚维正则子流形。我们也可以构造图像对应的坐标卡。

例(图像作为正则子流形). 设𝑀 , 𝑁是光滑流形，𝑓 : 𝑀 → 𝑁是光滑映射，证明图像𝑔𝑟(𝐹) = {(𝑝, 𝐹(𝑝)) ∈
𝑀 ×𝑁 : 𝑝 ∈ 𝑀}是𝑀 ×𝑁的正则子流形.

例(). 设𝑀是𝑁的闭正则子流形，证明𝑀上的向量场可以延拓到𝑁上. 并举例说明“闭”条件不可或缺.
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下面给出浸入子流形和正则子流形之间的关系。这里通过嵌入这个概念连接。我们首先给

出几个引理。

引理(1). 若𝐹 : 𝑈 ⊂ ℝ𝑛 → ℝ𝑛是𝐶1映射，且rank𝐷𝐹 ≡ 𝑛, 则𝐹是开映射.

引理().

定理(浸入子流形和正则子流形). 设𝑀 , 𝑁分别是𝑚, 𝑛维𝐶𝑘流形，𝐹 : 𝑀 → 𝑁是单浸入，则𝐹(𝑀)是𝑁的正则
子流形，当且仅当𝐹是嵌入。

我们常常用下面的定理证明一个流形是正则子流形.

定理(正则值判定). 设𝑓 : 𝑀 → 𝑁是𝐶𝑘映射，rank 𝑓 = 𝑟, 则∀𝑞 ∈ 𝑓(𝑀), 𝑓−1(𝑞)是𝑀的𝑚− 𝑟维闭正则子流形.

证明：取𝑝 ∈ 𝑓−1(𝑞), 由秩定理，存在𝑀的包含𝑝的坐标卡(𝑈, 𝜑), 𝑁的包含𝑞的坐标卡(𝑉 , 𝜓), 使得𝑓(𝑈) ⊂ 𝑉 , 𝜑(𝑝) = 𝟎𝑚, 

𝜓(𝑞) = 𝟎𝑛, 且𝑓 = 𝜓 ∘ 𝑓 ∘ 𝜑−1满足

𝑓(𝑥1, ⋯, 𝑥𝑚) =
(


𝑥1, ⋯, 𝑥𝑟, 0, ⋯, 0⏟

𝑛−𝑟个 )



(25)

此时𝑓(𝟎𝑚) = 𝑓(𝜑(𝑝)) = 𝜓(𝑓(𝑝)) = 𝜓(𝑞), 由上述坐标关系，有𝜓(𝑞) = 𝟎𝑛, 𝜑(𝑈 ∩ 𝑓−1(𝑞)) = 𝑓−1(𝟎) = {(𝑥1, ⋯, 𝑥𝑚) ∈ 𝜑(𝑈) :
𝑥1 = ⋯ = 𝑥𝑟 = 0}
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即子流形坐标卡, 剩余的𝑚− 𝑟维可自由变动. 这里的𝑓−1(𝑞)也被称为水平集(Level set).

∎

例(一般线性群的子流形). 考虑正交群𝑂(𝑛,ℝ) = {𝐴 = 𝑎𝑖𝑗 ∈ 𝐺𝐿(𝑛,ℝ) : 𝐴𝑡𝐴 = 𝐼}.证明其为𝐺𝐿(𝑛,ℝ)的正则
子流形.

证明：定义映射𝑓 : 𝐺𝐿(𝑛,ℝ) → Sym(𝑛,ℝ), 𝑓(𝐴) = 𝐴𝑡𝐴− 𝐼 , 其中Sym(𝑛,ℝ)为𝑛 × 𝑛的对称矩阵空间. 显然𝑂(𝑛,ℝ) = 𝑓−1(0). 
下面计算其秩. 取𝐴 ∈ 𝐺𝐿(𝑛,ℝ), 则𝐷𝑓(𝐴) : 𝑇𝐴(𝐺𝐿(𝑛,ℝ)) → 𝑇𝑓(𝐴)(Sym(𝑛,ℝ))为线性映射，且由于它们是向量空间，所以 

𝑇𝐴(𝐺𝐿(𝑛,ℝ)) ≅ ℝ𝑛2 , 𝑇𝑓(𝐴)(Sym(𝑛,ℝ)) ≅ Sym(𝑛,ℝ). 对𝑋 ∈ ℝ𝑛2 , 计算

𝑑𝑓𝐴(𝑋) =
𝑑
𝑑𝑡
[𝑓(𝐴 + 𝑡𝑋)]|𝑡=0 =

𝑑
𝑑𝑡
[(𝐴 + 𝑡𝑋)𝑡(𝐴 + 𝑡𝑋) − 𝐼]|𝑡=0 = 𝐴𝑡𝑋 +𝑋𝑡𝐴 (26)

任给一个𝑌 ∈ Sym(𝑛,ℝ), 令𝑋 = 1
2𝐴

−𝑡𝑌 , 则有𝑑𝑓𝐴(𝑋) = 𝑌 , 因此𝐷𝑓(𝐴)是满射，秩为𝑛(𝑛+1)
2 ，从而正则子流形的维数是𝑛2 −

𝑛(𝑛+1)
2 = 𝑛(𝑛−1)

2 .

∎

我们有下面的推论.

定理(推论). 设𝑓 : 𝑀 → 𝑁是淹没，则∀𝑞 ∈ 𝑓(𝑀), 𝑓−1(𝑞)是𝑀的𝑚− 𝑟维闭正则子流形.

注意几个反例。
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3.单位分解

先给出两个概念的定义.

定义(加细). 设𝑈𝛼, 𝑈𝛽是𝑋的两个开覆盖，若∀𝛼, ∃𝛽, s.t. 𝑈𝛼 ⊂ 𝑈𝛽, 则称𝑈𝛼是𝑈𝛽的加细.

定义(局部有限). 设𝑋是拓扑空间，{𝑈𝛼 : 𝛼 ∈ 𝐽}是一族子集，若∀𝑝 ∈ 𝑋, ∃𝑊𝑝开邻域，s.t. #{𝛼 ∈ 𝐽 : 𝑈𝛼 ∩
𝑊𝑝 ≠ ∅} < ∞, 则称{𝑈𝛼}𝛼∈𝐽是局部有限的.

考虑流形上的映射，𝑓 : 𝑀 → ℝ, 记紧支集为supp𝑓 = {𝑥 ∈ 𝑀 : 𝑓(𝑥) ≠ 0}, 我们引入下面的定义

定义(单位分解). 𝑀上的函数族{𝑓𝑖}𝑖≥1被称为𝑀上的单位分解，若其满足

(i) 𝑓𝑖 ≥ 0, 且𝑓𝑖 ∈ 𝐶𝑘(𝑀) ∀𝑖 ≥ 1.

(ii) {supp𝑓𝑖}是𝑀的局部有限的覆盖.

(iii) ∑∞
𝑖=1 𝑓𝑖(𝑝) = 1, ∀𝑝 ∈ 𝑀 .

为了给出单位分解定理，我们先给出一个引理。

引理(寻找局部有限加细). 设𝐴𝛼是𝑀的开覆盖，则存在可数多个坐标卡(𝑈𝑗, 𝜑𝑗), 𝑗 ≥ 1, 使得 (i) {𝑈𝑗}是{𝐴𝛼}
的加细.  (ii) {𝑈𝑗}是局部有限的.  (iii) 𝜑𝑗(𝑈𝑗) = 𝐵𝑚

0 (1),  (iv) {𝑉𝑗 = 𝜑−1𝑗 (𝐵𝑚
0 (12))}是𝑀的开覆盖.
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证明： 由于𝑀是局部紧的，并且𝑀具有可数基𝐴2，从而∃{𝑉𝑖}𝑖≥1开集, 𝑀 = ∪∞𝑖=1 𝑉𝑖, 且𝑉𝑖是紧集. 下面基于此构造紧集列

𝐾𝑖，𝐾0 = ∅, 𝐾1 = 𝑉1, 由于𝐾1 ⊂ ∪∞𝑖=1 𝑉𝑖是紧集, 于是∃𝑟 > 1, s.t. 𝐾1 ⊂ ∪𝑟𝑖=1 𝑉𝑖. 取最小的𝑟，令𝐾2 ≔ ∪𝑟𝑖=1 𝑉𝑖 = ∪𝑟𝑖=1 𝑉𝑖.

一般地，若𝐾𝑖已经定义，则取最小的𝑟，s.t. 𝐾𝑖 ⊂ ∪𝑟𝑖=1 𝑉𝑖, 定义𝐾𝑖+1 = ∪𝑟𝑖=1 𝑉𝑖. 如果出现𝐾𝑖 = 𝐾𝑖+1, 则𝐾𝑖+1 = 𝑀 . 首先我们

可以发现𝐾𝑖的几个性质.

(i) 𝐾𝑖 ⊂ ̊𝐾𝑖+1,  (ii) 𝑀 = ∪∞𝑖=1 (𝐾𝑖+1 −𝐾𝑖) (∪𝑙𝑖=1 (𝐾𝑖+1 −𝐾𝑖) = 𝐾𝑙.)

下面考虑𝐾𝑖+1 − 𝐾̊𝑖 ⊂ ̊𝐾𝑖+2 −𝐾𝑖−1, 前者紧，后者开。任取𝑝 ∈ 𝐴𝛼 ∩ ( ̊𝐾𝑖+2 −𝐾𝑖−1), 有坐标卡(𝑈𝑝, 𝜑𝑝), s.t. 𝑈𝑝 ⊂ 𝐴𝛼 ∩
( ̊𝐾𝑖+2 −𝐾𝑖−1), 𝜑𝑝(𝑝) = 0, 且𝜑𝑝(𝑈𝑝) = 𝐵0(1). 令𝑉𝑝 = 𝜑−1𝑝 (𝐵0(12)), 由𝐾𝑖+1 − 𝐾̊𝑖紧，存在有限个𝑉𝑝1 , ⋯, 𝑉𝑝𝑁 , s.t. ∪𝑁𝑖=1 𝑉𝑝𝑖 ⊃
𝐾𝑖+1 − 𝐾̊𝑖.



2 微分流形

记ℱ︀𝑖 = {𝑉𝑝1 , ⋯, 𝑉𝑝𝑁}, 则可列个并覆盖𝑀 (iv). 令𝒢︀𝑖 = {𝑈𝑝1 , ⋯, 𝑈𝑝𝑁}, 从而∪∞𝑖=1 𝒢︀𝑖是𝐴𝛼的加细(i)。事实上，其是局部有限(ii)

的。任取𝑝 ∈ 𝑀 , ∃𝑖0, s.t. 𝑝 ∈ ̊𝐾𝑖0 , 当𝑖 ≥ 𝑖0 + 1时，∀𝑈 ∈ 𝒢︀𝑖, 𝑈 ⊂ ̊𝐾𝑖+2 −𝐾𝑖−1, 从而𝑈 ∩ 𝑉𝑖 = ∅, 从而与𝑝相交的𝑈只能来自于
有限个𝑖，从而局部有限性得证.

∎

定理(单位分解定理). 设𝐴𝛼是𝑀的开覆盖，则存在𝑀上的单位分解{𝑓𝑖}𝑖≥1, 使得{supp𝑓𝑖}是𝐴𝛼的加细. 我们记

𝑓𝑖是从属于𝐴𝛼的单位分解.

证明：根据引理，对给定的开覆盖𝐴𝛼, 有𝑈𝑗是其加细，且𝑉𝑗也是𝑀开覆盖. 我们在每一个𝑈𝑗, 𝑉𝑗上，利用之前的 Uryson引理，

存在𝑀上的𝐶𝑘函数𝑓𝑗, s.t. 𝑓𝑗|𝑉𝑗 = 1, 𝑓𝑗|𝑀−𝑈𝑗 = 0, 从而supp𝑓𝑗 ⊂ 𝑈𝑗，于是{supp𝑓𝑗}是𝐴𝛼的加细. supp𝑓𝑗是局部有限的，因为
𝑈𝑗是局部有限的，从而∑𝑗 𝑓𝑗实际上是局部有限和。

令𝑓 = ∑𝑗 𝑓𝑗, 从而∀𝑝 ∈ 𝑀 , 𝑓(𝑝) ≥ 1, 从而∑𝑗 𝑓𝑗/𝑗 = 1. 于是𝑔𝑗 = 𝑓𝑗/𝑓符合要求.

∎

定理(流形嵌入). 设𝑀是紧致的𝐶𝑘流形，则存在𝑛 ∈ ℕ+, 以及𝑀到ℝ𝑛的嵌入.
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1.函数芽与导数

定义流形上的函数芽如下。

定义(函数芽). 取𝑝 ∈ 𝑀 , 𝑈是𝑝的开邻域，𝐶∞(𝑈)为𝑈上的光滑函数. 在函数族𝜌 = {(𝑢, 𝑓) : 𝑈 是开邻域, 𝑓 ∈
𝐶∞(𝑈)}上考虑一个等价关系∼，若(𝑈, 𝑓), (𝑉 , 𝑔) ∈ 𝜌, ∃𝑊 ⊂ 𝑈 ∩ 𝑉 , 使得𝑓|𝑊 = 𝑔|𝑊 .

我们记𝐶∞
𝑝 (𝑈) = 𝜌/ ∼为𝑝处的𝐶∞函数芽.

我们可以在这个空间上定义加法和乘法，继承于函数的加法和乘法。里面的代表元一般记作[𝑓], 
省去开邻域的书写(这便是主要目的)。不出现歧义的地方，我们直接取𝑓为其中的元素.

定义(导数). 线性映射𝐷 : 𝐶∞
𝑝 (𝑀) → ℝ被称为导数，若其满足 Liebnitz法则，即

𝐷(𝑓𝑔) = 𝐷𝑓𝑔(𝑝) + 𝐷𝑔𝑓(𝑝) (27)

这里的导数便是一般欧式空间上导数的推广，我们将其视为𝑓的泛函.

引理(利用曲线定义导数). 任给光滑曲线𝛾 : (−𝜀, 𝜀) → 𝑀 , 𝛾(0) = 𝑝, 则

𝐷𝛾′(0) : 𝐶∞
𝑝 → ℝ, 𝑓 ↦ d(𝑓 ∘ 𝛾(𝑡))

d𝑡
|
𝑡=0

(28)
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是导数.

证明：需要验证其是良定义的. 当取𝑓, 𝑔 ∈ 𝐶∞
𝑝 (𝑀), 𝑓|𝑊 = 𝑔|𝑊 , 代入验证即可. Leibnitz性质继承于求导的链式法则.

∎

设𝑀是𝑚维光滑流形，记Der(𝐶∞
𝑝 (𝑀)) = {𝐷 : 𝐷是𝐶∞

𝑝 上的导数}. 则我们自然定义

Der(𝐶∞
𝑝 (𝑀))上的线性结构，并证明其是𝑚维线性空间.

证明： 其上的线性结构𝐷1 + 𝑘𝐷2定义为

(𝐷1 + 𝑘𝐷2)(𝑓) = 𝐷1(𝑓) + 𝑘𝐷2(𝑓) (29)

容易得到𝐷1 + 𝑘𝐷2 ∈ Der(𝐶∞
𝑝 (𝑀)).

下面利用流形的坐标卡寻找该空间的基. 取𝑝 ∈ 𝑀 , 以及坐标卡(𝑈, 𝜑, 𝑥𝑖), 不妨令𝜑(𝑝) = 0. 定义𝐷𝑖为

𝐷𝑖(𝑓) =
𝜕𝑓 ∘ 𝜑−1

𝜕𝑥𝑖
|𝜑(𝑝) (30)

注意上面是ℝ𝑛 → ℝ上函数的偏导数，是有实际含义的. 则𝐷𝑖 ∈ Der(𝐶∞
𝑝 (𝑀)). 事实上，取曲线𝛾𝑖(𝑡) =

𝜑−1(0,⋯, 0, 𝑡⏟
𝑖

, 0, ⋯, 0), 第𝑖个为变量，则𝐷𝑖 = 𝐷𝛾′𝑖(0). 可证明{𝐷1, ⋯,𝐷𝑚}是线性无关的.
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具体来说，取函数芽𝑥𝑖 = 𝑥𝑖 ∘ 𝜑, 这里𝑥𝑖 : ℝ𝑚 → ℝ是坐标投影函数，即𝑥𝑖(𝑡1, ⋯, 𝑡𝑚) = 𝑡𝑖. 注意这里为了统一，𝑥𝑖表示ℝ𝑚 →
ℝ的映射。之后，如果没有歧义，我们不加以区分𝑥𝑖和𝑥𝑖. 也就是说，当没有作为求导符号时，𝑥𝑖可以表示𝑀上的函数芽，
也可以表示欧氏空间中的坐标投影函数. 但𝑥𝑖作为求偏导的下标时，又作为坐标分量的偏导数符号. 之后会看到这样表达的

好处. 从而

𝐷𝑖(𝑥𝑗) =
𝜕𝑥𝑗 ∘ 𝜑 ∘ 𝜑−1

𝜕𝑥𝑖
= 𝛿𝑖𝑗. (31)

从而验证线性无关。然后利用泰勒展开寻求每个𝐷的表示. 具体来说，首先有𝐷(1) = 0. 其次，对∀𝑓 ∈ 𝐶∞(𝑀), 𝑓 = 𝑓 ∘
𝜑−1 : ℝ𝑚 → ℝ是光滑函数，从而由欧氏空间上的泰勒展开，有

𝑓(𝒓) = 𝑓(0) + ∇𝑓(0) · 𝒓 + 𝒓𝑇∇2𝑓(𝜃𝒓)𝒓

= 𝑓(0) +∑
𝑚

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

|𝟎 · 𝑥𝑖 + ∑
𝑚

𝑖,𝑗=1
ℎ𝑖𝑗𝑥𝑖𝑥𝑗 注意这里的𝑥𝑖表示欧氏空间中关于原点的增量

𝑓 = 𝑓(𝑝) +∑
𝑚

𝑖=1

𝜕𝑓 ∘ 𝜑−1

𝜕𝑥𝑖
|𝜑(𝑝) · 𝑥𝑖 +∑

𝑖,𝑗
ℎ̃𝑖𝑗𝑥𝑖𝑥𝑗 复合𝜑

𝐷𝑓 = 0 +∑
𝑚

𝑖=1
𝐷𝑖(𝑓) · 𝐷(𝑥𝑖) +∑

𝑖,𝑗
ℎ̃𝑖𝑗(𝐷(𝑥𝑖)𝑥𝑗(𝑝) + 𝐷(𝑥𝑘)𝑥𝑗(𝑝))

(32)

从而𝐷𝑓 = ∑𝑚
𝑖=1𝐷(𝑥

𝑖)𝐷(𝑓), 即𝐷 =∑𝑚
𝑖=1𝐷(𝑥

𝑖)𝐷𝑖. 因此{𝐷1, ⋯,𝐷𝑚}是Der(𝐶∞
𝑝 (𝑀))的基底，其维数为𝑚.
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∎

2.切向量与切空间

为表达简洁，把上述证明中的𝐷𝑖记作 𝜕
𝜕𝑥𝑖 |𝑝, 将坐标卡映射省去.

我们将Der(𝐶∞
𝑝 (𝑀))称为𝑀在𝑝处的切空间，记为𝑇𝑝(𝑀). 同理，我们可以定义Der(𝐶𝑘

𝑝 (𝑀)), 注
意其是无限维的，所以不具有实用性. 这时需要注意，记Γ𝑘𝑝 = {𝛾 : (−𝜀, 𝜀) → 𝑀; 𝛾(0) = 𝑝}, 则有

{𝐷𝛾′(0) : 𝐶𝑘
𝑝 (𝑀) → ℝ; 𝛾 ∈ Γ𝑘𝑝 } = span(𝐷1, ⋯,𝐷𝑛). (33)

称𝑇𝑝(𝑀)中的元素为切向量，记为𝑋𝑝. 𝜕
𝜕𝑥𝑖 |𝑝是𝑇𝑝(𝑀)在坐标卡(𝑈, 𝜑; 𝑥𝑖)下的自然基底.

考虑到一个切向量与坐标表达无关，我们试图得到其在不同坐标下的转换公式.

定理(坐标变换公式). (i) 不同坐标卡基底之间的变换公式.

𝜕
𝜕𝑥̃𝑗

|𝑝 =∑
𝑚

𝑖=1

𝜕𝑥𝑖

𝜕𝑥̃𝑗
|𝜑̃(𝑝)

𝜕
𝜕𝑥𝑖

|𝑝. (34)

(ii) 同一个切向量在不同坐标卡下坐标的变换公式. 设𝑋𝑝 = ∑𝑚
𝑖=1𝑋

𝑖 𝜕
𝜕𝑥𝑖 |𝑝 = ∑𝑚

𝑖=1 𝑋̃
𝑖 𝜕
𝜕𝑥̃𝑖 |𝑝, 则
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𝑋̃𝑗 =∑
𝑚

𝑖=1
𝑋𝑖𝜕𝑥̃𝑗

𝜕𝑥𝑖
|𝜑(𝑝) (35)

证明：

𝜕𝑓
𝜕𝑥̃𝑗

|𝑝 =
𝜕𝑓 ∘ 𝜓−1

𝜕𝑥̃𝑗
|𝜓(𝑝)

= 𝜕𝑓 ∘ 𝜑−1 ∘ 𝜑 ∘ 𝜓−1

𝜕𝑥̃𝑗
|𝜓(𝑝)

=∑
𝑚

𝑖=1

𝜕𝑓 ∘ 𝜑−1

𝜕𝑥𝑖
|𝜑(𝑝)

𝜕𝑥𝑖

𝜕𝑥̃𝑗
|𝜓(𝑝)

=∑
𝑚

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

|𝑝
𝜕𝑥𝑖

𝜕𝑥̃𝑗
|𝜓(𝑝)

(36)

∎

下面利用对偶空间的性质得到一些有趣的结论. 我们只讨论光滑流形. 我们将𝑇𝑝(𝑀)的对偶
空间记为𝑇 ∗𝑝 (𝑀)，称为余切空间. 若𝑓 ∈ 𝐶∞

𝑝 (𝑀), 记𝑑𝑓𝑝 ∈ 𝑇 ∗𝑝 (𝑀), 被称为𝑓在𝑝处的微分，定义为

𝑑𝑓𝑝(𝑋𝑝) = 𝑋𝑝(𝑓), ∀𝑋𝑝 ∈ 𝑇𝑝(𝑀). (37)
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余切空间的基底可通过对偶空间理论寻找. 取𝑝处的某坐标卡下，𝑇𝑝(𝑀)的自然基底 𝜕
𝜕𝑥𝑖 |𝑝, 取𝑓 =

𝑥𝑖 ∈ 𝐶∞
𝑝 (𝑀), 即坐标分量函数，取其微分𝑑𝑥𝑖𝑝 ∈ 𝑇 ∗𝑝 (𝑀), 定义为

𝑑𝑥𝑖𝑝(
𝜕
𝜕𝑥𝑗

|𝑝) = 𝜕𝑥𝑖

𝜕𝑥𝑗
|𝑝 = 𝛿𝑖𝑗. (38)

可知这是𝑇 ∗𝑝 (𝑀)中的对偶基.

下面讨论切空间之间的关系.

定义(切映射). 若𝑓 : 𝑀 → 𝑁是光滑映射，𝑓(𝑝) = 𝑞. 定义𝑓∗𝑝 : 𝑇𝑝(𝑀) → 𝑇𝑞(𝑁)为

𝑓∗𝑝(𝑋𝑝)(𝑔) = 𝑋𝑝(𝑔 ∘ 𝑓), 𝑔 ∈ 𝐶∞
𝑞 (𝑁). (39)

特别地，对于𝐶𝑘流形，取𝑋𝑝 = 𝐷𝛾′(0), 则𝑓∗𝑝(𝑋𝑝) = 𝐷(𝑓∘𝛾)′(0).

定义(切映射的对偶映射). 𝑓∗𝑝 : 𝑇𝑝(𝑀) → 𝑇𝑞(𝑁)的对偶映射，记为𝑓∗𝑝 : 𝑇 ∗𝑞 (𝑁) → 𝑇 ∗𝑝 (𝑀)，即

𝑓∗𝑝(𝜃𝑞)(𝑋𝑝) = 𝜃𝑞(𝑓∗𝑝(𝑋𝑝)), 𝜃𝑞 ∈ 𝑇 ∗𝑞 (𝑁). (40)
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这里的定义对应于对偶空间理论，便是对偶映射可直接典范定义为被作用泛函和原映射的复合. 可以回忆

Done right中的

𝑓∗𝑝

𝑓∗𝑝 = 𝜃𝑞 ∘ 𝑓∗𝑝

𝑇𝑝𝑀
𝜃𝑞 ∈ 𝑇 ∗𝑞𝑁𝑇𝑞𝑁 ℝ

对于𝑔 ∈ 𝐶∞
𝑞 (𝑀), 𝑑𝑔𝑞 ∈ 𝑇 ∗𝑞 (𝑁), 利用之前的微分的定义，有𝑓∗𝑝(𝑑𝑔𝑞) = 𝑑(𝑔 ∘ 𝑓)𝑝.

这里我们再看看有坐标卡情况下的具体表达.

定理(切映射的坐标表达). 𝑓 : 𝑀 → 𝑁是光滑映射，𝑓(𝑝) = 𝑞. 取含𝑝, 𝑞的坐标卡(𝑈, 𝜑; 𝑥𝑖)和(𝑉 , 𝜓; 𝑦𝑖), 𝑓(𝑈) ⊂
𝑉 . 则

𝑓∗𝑝(
𝜕
𝜕𝑥𝑖

|𝑝) =∑
𝑛

𝑗=1

𝜕
𝜕𝑦𝑗

|𝑞
𝜕𝑦𝑗

𝜕𝑥𝑖
|𝜑(𝑝) (41)

上面的结论本质上是链式法则的结果. 但是我们也可以从基底线性表示的角度来看待. 这样能够

快速得到余切空间上有类似的坐标表达.
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定理(余切映射的坐标表达). 𝑓 : 𝑀 → 𝑁是光滑映射，𝑓(𝑝) = 𝑞. 取含𝑝, 𝑞的坐标卡(𝑈, 𝜑; 𝑥𝑖)和(𝑉 , 𝜓; 𝑦𝑖), 
𝑓(𝑈) ⊂ 𝑉 . 则

𝑓∗𝑝(𝑑𝑦𝑗|𝑞) =∑
𝑚

𝑖=1
𝑑𝑥𝑖|𝑝

𝜕𝑦𝑗

𝜕𝑥𝑖
|𝜑(𝑝) (42)

证明： 只需证明左右两边表达式在基上的作用相同. 取 𝜕
𝜕𝑥𝑘 ∈ 𝑇𝑝𝑀 , 则有

𝑓∗𝑝(𝑑𝑦𝑗|𝑞)(
𝜕
𝜕𝑥𝑘

|𝑝) = 𝑑𝑦𝑗|𝑞 (𝑓∗𝑝
𝜕
𝜕𝑥𝑘

|𝑝) = 𝑑𝑦𝑗|𝑞 (∑
𝑛

𝑖=1

𝜕
𝜕𝑦𝑖

|𝑞
𝜕𝑦𝑖

𝜕𝑥𝑘
|𝜑(𝑝))

=∑
𝑛

𝑖=1

𝜕𝑦𝑖

𝜕𝑥𝑘
|𝜑(𝑝) 𝑑𝑦𝑗|𝑞 (

𝜕
𝜕𝑦𝑖

|𝑞) =∑
𝑛

𝑖=1

𝜕𝑦𝑖

𝜕𝑥𝑘
|𝜑(𝑝) 𝛿𝑖𝑗

= 𝜕𝑦𝑗

𝜕𝑥𝑘
|𝜑(𝑝) =∑

𝑚

𝑖=1

𝜕𝑦𝑗

𝜕𝑥𝑖
|𝜑(𝑝) 𝛿𝑖𝑘

=∑
𝑚

𝑖=1
𝑑𝑥𝑖|𝑝

𝜕𝑦𝑗

𝜕𝑥𝑖
|𝜑(𝑝)(

𝜕
𝜕𝑥𝑘

|𝑝)

(43)

∎
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3.切丛

当𝑝在𝑀上移动时，𝑇𝑝𝑀是一族线性空间。设𝑀是一个𝐶𝑘流形(𝑘 ≥ 2), 定义𝑇𝑀 =
⨆
𝑝∈𝑀

𝑇𝑝𝑀 , 我们可以在𝑇𝑀上引入𝐶𝑘−1微分结构。

定义(投影映射). 𝜋 : 𝑇𝑀 → 𝑀 , 定义为

𝜋(𝑋𝑝) = 𝑝, ∀𝑋𝑝 ∈ 𝑇𝑀. (44)

定义(在𝑇 𝑀上引入拓扑结构). 取(𝑈, 𝜑; 𝑥𝑖)是𝑀上的坐标卡，定义𝜑̃ : 𝜋−1(𝑈) → 𝜑(𝑈) × ℝ𝑚如下，任取𝑝 ∈
𝑀 , 𝑋𝑝可被自然基底线性表达𝑋𝑝 = ∑𝑚

𝑖=1𝑋
𝑖 𝜕
𝜕𝑥𝑖 |𝑝, 令𝜑̃(𝑋𝑝) = (𝜑(𝑝),𝑋1, ⋯,𝑋𝑚). 显然𝜑̃是双射. 利用上述映

射，可以自然地在𝑇𝑀上引入拓扑结构，使得𝜑̃是同胚.

引理(在𝑇 𝑀上引入坐标卡). 设(𝑈, 𝜑; 𝑥𝑖), (𝑉 , 𝜓; 𝑦𝑖)是𝑀上𝐶𝑘相容的坐标卡，则𝜓 ∘ 𝜑̃−1是𝐶𝑘−1同胚.

证明：不妨设𝑝 ∈ 𝑈 ∩ 𝑉 ≠ ∅. 𝑋𝑝 ∈ 𝑇𝑝𝑀 . 在两个坐标卡内可表示为𝑋𝑝 = ∑𝑚
𝑖=1𝑋

𝑖 𝜕
𝜕𝑥𝑖 |𝑝 = ∑𝑚

𝑖=1 𝑋̃
𝑖 𝜕
𝜕𝑦𝑖 |𝑝. 并且有坐标变换公

式𝑋̃𝑖 = ∑𝑚
𝑗=1𝑋

𝑗 𝜕𝑦𝑖
𝜕𝑥𝑗是𝐶

𝑘−1函数. 从而由

𝜓 ∘ 𝜑̃−1 : 𝜑̃(𝜋−1(𝑈 ∩ 𝑉 )) → 𝜓(𝜋−1(𝑈 ∩ 𝑉 )) (45)

得到
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𝜓 ∘ 𝜑(𝜑(𝑝),𝑋1, ⋯,𝑋𝑚) = (𝜓(𝑝), 𝑋̃1, ⋯, 𝑋̃𝑚). (46)

∎

𝑇𝑀赋予如上的微分结构，被称为切丛。

4.向量场、单参数变换群

下面的向量场𝑋也被称为切丛𝑇𝑀的截面，其为每一个点𝑝都指定了一个切向量。

定义(𝐶∞向量场). 𝑀是𝐶∞流形，𝑋 : 𝑀 → 𝑇𝑀是𝐶∞映射，且∀𝑝 ∈ 𝑀 , 𝑋(𝑝) ∈ 𝑇𝑝𝑀 , 则称𝑋是𝐶∞向量场.

定义(𝐶𝑘向量场). 设𝑀是𝐶𝑘流形，若𝑋 : 𝑀 → 𝑇𝑀是𝐶𝑘−1映射，且𝜋 ∘ 𝑋 = id, 则称𝑋是𝐶𝑘−1向量场.

反过来，我们有

定理(3). 设𝑋 : 𝑀 → 𝑇𝑀 , 且𝜋 ∘ 𝑋 = id, 若∀𝑓 ∈ 𝐶𝑘(𝑀), 𝑋𝑓 ∈ 𝐶𝑘−1(𝑀), 则𝑋是𝐶𝑘−1映射，即𝐶𝑘−1向量场.

定义(单参数变换群). 设𝑀是𝐶∞流形，𝜑 : ℝ ×𝑀 →𝑀是𝐶∞映射，记为𝜑(𝑡, 𝑝) = 𝜑𝑡(𝑝), 若其满足 (i) 

𝜑0(𝑝) = 𝑝, (ii) ∀𝑠, 𝑡 ∈ ℝ, 𝜑𝑠 ∘ 𝜑𝑡 = 𝜑𝑠+𝑡, 则称𝜑为单参数变换群。

可以缩小ℝ×𝑀上的定义域，使得𝜑称为局部单参数变换群。
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定义(轨线). 设𝜑 : 𝐼𝜀 × 𝑈 → 𝑀是局部单参数变换群，给定一个𝑝 ∈ 𝑈 , 𝜑(·, 𝑝) : 𝐼𝜀 →𝑀被称为过𝑝的轨线. 该

轨线每一点对应的切向量为𝑋𝑝 = 𝐷𝜑′0(𝑝), 其称为𝜑诱导的向量场。

定义(积分曲线). 设𝑋 : 𝑀 → 𝑇𝑀是𝐶∞向量场，若曲线𝐶 : (−𝜀, 𝜀) → 𝑀满足

𝑋𝐶(𝑡) = 𝐶∗𝑡
𝜕
𝜕𝑡
∈ 𝑇𝐶(𝑡)𝑀, ∀𝑡 ∈ (−𝜀, 𝜀), (47)

则称𝐶是𝑋的积分曲线.

对于由𝜑诱导的向量场𝑋，我们有一个自然的结论。

定理(轨线即积分曲线). 设𝜑 : 𝐼𝜀 × 𝑈 → 𝑀是局部单参数变换群, 𝑋是其诱导的向量场，则轨线𝜑𝑡是𝑋的积分
曲线. 简单来说，就是向量场由单参数变换群的轨线的切向量诱导.

证明：任取𝑝 ∈ 𝑈 , 令𝐶(𝑡) = 𝜑𝑡(𝑝), 𝑡 ∈ 𝐼𝜀1是收缩过后的. 即证𝑋𝜑𝑡(𝑝) = 𝐶∗𝑡( dd𝑡), ∀𝑡 ∈ 𝐼𝜀1 . 任取𝑓 ∈ 𝐶∞(𝑀), 两边按照定义，
引入求导变量𝑠, 再利用单参数变换群的性质即可. 具体来说,

𝑋𝜑𝑡(𝑝)(𝑓) =
𝑑(𝑓 ∘ 𝜑𝑠 ∘ 𝜑𝑡(𝑝))

𝑑𝑠
|𝑠=0 =

𝑑(𝑓 ∘ 𝐶(𝑡 + 𝑠))
𝑑𝑠

|𝑠=0 =
d
d𝑠
(𝑓 ∘ 𝐶(𝑠))|𝑠=𝑡 = 𝐶∗𝑡(

d
d𝑡
)(𝑓) (48)

∎
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反过来，给定一个向量场，我们可以得到一个由其诱导的单参数变换群。其基础是常微分方程

解的存在唯一性理论。

定理(向量场诱导的单参数变换群). 设𝑋是𝐶∞流形𝑀上的𝐶∞向量场，则∀𝑝 ∈ 𝑀 , 存在𝑝的开邻域𝑈 , 𝜀 > 0, 以

及单参数变换群𝜑 : (−𝜀, 𝜀) × 𝑈 → 𝑀 , 使得𝜑诱导了𝑋.

定理(单参数变换群作用于向量场). 设𝐶∞向量场𝑋生成了单参数变换群𝜑𝑡, 𝜓 : 𝑀 → 𝑀是𝐶∞自同胚，则𝜓∗𝑋
生成了单参数变换群𝜓 ∘ 𝜑𝑡 ∘ 𝜓−1.

证明：只需证明𝜓 ∘ 𝜑𝑡 ∘ 𝜓−1诱导了𝜓∗𝑋. 而∀𝑝 ∈ 𝑀 , (𝜓∗𝑋)𝑝(𝑓) = 𝑋𝜓−1(𝑝)(𝑓 ∘ 𝜓) = 𝑋(𝑓 ∘ 𝜓) ∘ 𝜓−1(𝑝),

𝐷(𝜓∘𝜑𝑡∘𝜓−1(𝑝))′(0)(𝑓) =
𝑑𝑓 ∘ 𝜓 ∘ 𝜑𝑡 ∘ 𝜓−1(𝑝)

𝑑𝑡
|𝑡=0 = 𝐷(𝜑𝑡)′(0)(𝑓 ∘ 𝜓) ∘ 𝜓

−1(𝑝) = 𝑋(𝑓 ∘ 𝜓) ∘ 𝜓−1(𝑝) (49)

∎

定理(推论). 设𝜑𝑡是局部单参数变换群，其诱导了向量场𝑋, 则(𝜑𝑡)∗𝑋 = 𝑋.

例(). 𝑀是连通非紧流形，证明𝑀上存在一个处处非零的向量场.

5.李括号

定义(李括号). 设𝑀是𝐶∞流形，𝑋,𝑌是上面的两个𝐶∞向量场，定义
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[𝑋, 𝑌 ]𝑝(𝑓) = 𝑋𝑝𝑌 (𝑓) − 𝑌𝑝𝑋(𝑓), 𝑓 ∈ 𝐶∞(𝑀), (50)

即[𝑋, 𝑌 ](𝑓) = 𝑋(𝑌 𝑓) − 𝑌 (𝑋𝑓), [𝑋, 𝑌 ]被称为𝑋,𝑌的李括号.

引理(坐标表示). 设(𝑈, 𝜑; 𝑥𝑖)是坐标卡，𝑋|𝑈 = 𝑋𝑖 𝜕
𝜕𝑥𝑖 , 𝑌 |𝑈 = 𝑌 𝑗 𝜕

𝜕𝑥𝑗 , 则

𝑋𝑖 𝜕
𝜕𝑥𝑖

(𝑌 𝑗 𝜕𝑓
𝜕𝑥𝑗

) = 𝑋𝑖[𝜕𝑌
𝑗

𝜕𝑥𝑖
𝜕𝑓
𝜕𝑥𝑗

+ 𝑌 𝑗 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

], (51)

从而
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[𝑋, 𝑌 ](𝑓) = 𝑋𝑖 𝜕
𝜕𝑥𝑖

(𝑌 𝑗 𝜕𝑓
𝜕𝑥𝑗

)− 𝑌 𝑗 𝜕
𝜕𝑥𝑗

𝑋𝑖 𝜕𝑓
𝜕𝑥𝑖

= 𝑋𝑖[𝜕𝑌
𝑗

𝜕𝑥𝑖
𝜕𝑓
𝜕𝑥𝑗

+ 𝑌 𝑗 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

] − 𝑌 𝑗[𝜕𝑋
𝑖

𝜕𝑥𝑗
𝜕𝑓
𝜕𝑥𝑖

+𝑋𝑖 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

]

= 𝑋𝑖𝜕𝑌 𝑗

𝜕𝑥𝑖
𝜕𝑓
𝜕𝑥𝑗

− 𝑌 𝑗𝜕𝑋𝑖

𝜕𝑥𝑗
𝜕𝑓
𝜕𝑥𝑖

= 𝑋𝑖𝜕𝑌 𝑗

𝜕𝑥𝑖
𝜕𝑓
𝜕𝑥𝑗

− 𝑌 𝑖𝜕𝑋𝑗

𝜕𝑥𝑖
𝜕𝑓
𝜕𝑥𝑗

= [𝑋𝑖𝜕𝑌 𝑗

𝜕𝑥𝑖
− 𝑌 𝑖𝜕𝑋𝑗

𝜕𝑥𝑖
] 𝜕𝑓
𝜕𝑥𝑗

.

(52)

引理(李括号的性质). (i) [𝑋, 𝑌 ] = −[𝑌 ,𝑋],  (ii) 线性性. [𝑎𝑋1 + 𝑏𝑋2, 𝑌 ] = 𝑎1[𝑋1, 𝑌 ] + [𝑋2, 𝑌 ], 另一种类似.

(iii) [[𝑋, 𝑌 ], 𝑍] + [[𝑌 , 𝑍],𝑋] + [[𝑍,𝑋], 𝑌 ] = 0

证明：(iii) [[𝑋, 𝑌 ], 𝑍] = [𝑋, 𝑌 ] ∘ 𝑍 − 𝑍 ∘ [𝑋, 𝑌 ] = (𝑋 ∘ 𝑌 − 𝑌 ∘ 𝑋) ∘ 𝑍 − 𝑍 ∘ (𝑋 ∘ 𝑌 − 𝑌 ∘ 𝑋) = 𝑋 ∘ 𝑌 ∘ 𝑍 − 𝑌 ∘ 𝑋 ∘ 𝑍 + 𝑍 ∘
𝑋 ∘ 𝑌 − 𝑍 ∘ 𝑌 ∘ 𝑋.

∎

例(李括号与函数). 设𝑓, 𝑔 ∈ 𝐶∞(𝑀), 𝑋,𝑌是光滑向量场，求证[𝑓𝑋, 𝑔𝑌 ] = 𝑓(𝑋𝑔)𝑌 − 𝑔(𝑌 𝑓)𝑋 + 𝑓𝑔[𝑋, 𝑌 ].

证明：代入验证即可。∀ℎ ∈ 𝐶∞(𝑀),
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[𝑓𝑋, 𝑔𝑌 ]𝑝(ℎ) = (𝑓𝑋)𝑝(𝑔𝑌 )(ℎ) − (𝑔𝑌 )𝑝(𝑓𝑋)(ℎ)

= 𝑓(𝑝)[𝑌𝑝(ℎ)𝑋𝑝(𝑔) + 𝑔(𝑝)𝑋𝑝(𝑌 ℎ)] − 𝑔(𝑝)[𝑋𝑝(ℎ)𝑌𝑝(𝑓) + 𝑓(𝑝)𝑌𝑝(𝑋ℎ)]

= 𝑓(𝑝)𝑋𝑝(𝑔)𝑌𝑝(ℎ) − 𝑔(𝑝)𝑌𝑝(𝑓)𝑋𝑝(ℎ) + 𝑓(𝑝)𝑔(𝑝)𝑋𝑝(𝑌 ℎ) − 𝑓(𝑝)𝑔(𝑝)𝑌𝑝(𝑋ℎ)

= {𝑓(𝑋𝑔)𝑌 − 𝑔(𝑌 𝑓)𝑋 + 𝑓𝑔[𝑋, 𝑌 ]}𝑝(ℎ)

(53)

∎

设𝑓 : 𝑀 → 𝑁是𝐶∞同胚, 𝑋是𝑀上的向量场，则𝑓∗𝑋是𝑁上的向量场(每一点都唯一确定一个切

向量)，定义𝑓∗𝑋 : 𝑓∗𝑋(𝑞) = 𝑓∗𝑓−1(𝑞)(𝑋𝑓−1(𝑞)) ∈ 𝑇𝑞(𝑁), 从而

(𝑓∗𝑋)𝑞(𝑔) = 𝑓∗𝑓−1(𝑞)(𝑋𝑓−1(𝑞))(𝑔) = 𝑋𝑓−1(𝑞)(𝑔 ∘ 𝑓) = 𝑋(𝑔 ∘ 𝑓) ∘ 𝑓−1(𝑞). (54)

引理(李括号的切映射). 设𝑓 : 𝑀 → 𝑁是𝐶∞同胚，则𝑓∗[𝑋, 𝑌 ] = [𝑓∗𝑋, 𝑓∗𝑌 ].

证明：只需证任取𝑔 ∈ 𝐶∞(𝑁), 则有𝑓∗𝑝[𝑋, 𝑌 ]𝑝(𝑔) = [𝑓∗𝑋, 𝑓∗𝑌 ]𝑓(𝑝)(𝑔), 而LHS = [𝑋, 𝑌 ]𝑝(𝑔 ∘ 𝑓) = 𝑋𝑝𝑌 (𝑔 ∘ 𝑓) − 𝑌𝑝𝑋(𝑔 ∘ 𝑓),



3 切空间、切丛

RHS = (𝑓∗𝑋)𝑓(𝑝)(𝑓∗𝑌 )(𝑔) − (𝑓∗𝑌 )𝑓(𝑝)(𝑓∗𝑋)(𝑔)

= (𝑓∗𝑋)𝑓(𝑝)[𝑌 (𝑔 ∘ 𝑓) ∘ 𝑓
−1] − (𝑓∗𝑌 )𝑓(𝑝)[𝑋(𝑔 ∘ 𝑓) ∘ 𝑓

−1]

= 𝑋𝑝(𝑌 (𝑔 ∘ 𝑓) ∘ 𝑓−1 ∘ 𝑓) − 𝑌𝑝(𝑋(𝑔 ∘ 𝑓) ∘ 𝑓−1 ∘ 𝑓)

= 𝑋𝑝𝑌 (𝑔 ∘ 𝑓) − 𝑌𝑝𝑋(𝑔 ∘ 𝑓) = LHS

(55)

∎

设𝜑𝑡是局部单参数变换群，其诱导了向量场𝑋. 设𝑌是另一个𝐶∞向量场, 则有

定理(李括号与向量场). 令𝑊𝑡 = (𝜑𝑡)∗𝑌 , 则𝑊𝑡也是向量场，且
d𝑊𝑡
d𝑡 = [𝑊𝑡, 𝑋]. 其实上式等价于在𝑡 = 0时成立，

即
𝑑𝑊𝑡
𝑑𝑡 |𝑡=0 = [𝑊0, 𝑋] = [(𝜑0)∗𝑌 ,𝑋] = [𝑌 ,𝑋]，从而(𝜑𝑡)∗[𝑌 ,𝑋] = [(𝜑𝑡)∗𝑌 , (𝜑𝑡)∗𝑋] = [𝑊𝑡, 𝑋]

证明： ∀𝑓 ∈ 𝐶∞(𝑀),

𝑑𝑊𝑡
𝑑𝑡

(𝑓) = d
d𝑡
(𝜑𝑡)∗𝑌 (𝑓) =

d
d𝑡
[𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−1𝑡 ]

= lim
Δ𝑡→0

[𝑌 (𝑓 ∘ 𝜑𝑡+Δ𝑡) ∘ 𝜑−1𝑡+Δ𝑡 − 𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−1𝑡 ]
Δ𝑡

= lim
Δ𝑡→0

[𝑌 (𝑓 ∘ 𝜑𝑡+Δ𝑡) ∘ 𝜑−1𝑡+Δ𝑡 − 𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−1𝑡+Δ𝑡]
Δ𝑡

+
[𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−1𝑡+Δ𝑡 − 𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−1𝑡 ]

Δ𝑡
≔ Ⅰ+ Ⅱ

(56)
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Ⅰ = lim
Δ𝑡→0

[(𝑌 (𝑓 ∘ 𝜑𝑡+Δ𝑡) − 𝑌 (𝑓 ∘ 𝜑𝑡)) ∘ 𝜑−1𝑡+Δ𝑡]
Δ𝑡

= lim
Δ𝑡→0

[𝑌 (𝑓 ∘ 𝜑𝑡+Δ𝑡) − 𝑌 (𝑓 ∘ 𝜑𝑡)]
Δ𝑡

∘ 𝜑−1𝑡

= 𝑌( d
d𝑠
(𝑓 ∘ 𝜑𝑡 ∘ 𝜑𝑠)|𝑠=0) ∘ 𝜑−𝑡

= 𝑌 (𝑋(𝑓 ∘ 𝜑𝑡)) ∘ 𝜑−𝑡

(57)

由于(𝜑𝑠)∗𝑋 = 𝑋, ⇔ (𝜑𝑠)∗𝑋(𝑓) = 𝑋(𝑓) ⇔ 𝑋(𝑓 ∘ 𝜑𝑠) ∘ 𝜑−1𝑠 = 𝑋(𝑓) ⇔ 𝑋(𝑓 ∘ 𝜑𝑠) = 𝑋(𝑓) ∘ 𝜑𝑠, 从而Ⅰ = 𝑌 (𝑋(𝑓) ∘ 𝜑𝑡) ∘ 𝜑−𝑡 =
(𝜑𝑡)∗𝑌 (𝑋𝑓) = 𝑊𝑡(𝑋𝑓).

Ⅱ = −[𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−𝑡 ∘ 𝜑−Δ𝑡 − 𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−𝑡]
−Δ𝑡

= − d
d𝑠
(𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−𝑡 ∘ 𝜑𝑠)|𝑠=0 = −𝑋(𝑌 (𝑓 ∘ 𝜑𝑡) ∘ 𝜑−𝑡) = −𝑋((𝜑𝑡)∗𝑌 (𝑓)) = −𝑋(𝑊𝑡𝑓).

(58)

从而
𝑑𝑊𝑡
𝑑𝑡 (𝑓) = 𝑊𝑡(𝑋𝑓) − 𝑋(𝑊𝑡𝑓) = [𝑊𝑡, 𝑋](𝑓).

∎
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6.分布 Frobenius定理

任给𝑝 ∈ 𝑀 , 𝑇𝑝𝑀可以取子空间𝐷𝑝(维数𝑟), 遍历所有的𝑝, 可以得到类似切丛的结构𝐷 = ⊔𝑝∈𝑀
𝐷𝑝，其被称为𝑟维分布. 若∀𝑝 ∈ 𝑀 , 存在𝑝的开邻域𝑈 , 以及𝑈上的向量场𝑋1, ⋯,𝑋𝑟, s.t. ∀𝑞 ∈ 𝑈 , 

𝐷𝑞 = span(𝑋1(𝑞),⋯,𝑋𝑟(𝑞)), 则称𝐷在𝑈上由𝑋1, ⋯,𝑋𝑟生成。

定义(积分流形). 设𝑖 : 𝑊 → 𝑀是浸入子流形，若∀𝑝 ∈ 𝑀 , 𝑖∗𝑝(𝑇𝑝𝑊) ⊂ 𝐷𝑖(𝑝) ⊂ 𝑇𝑖(𝑝)𝑀 , 则称𝑖(𝑊)是𝐷的积分
流形.

定义(完全可积). 设𝐷是𝑟维分布，若∀𝑝 ∈ 𝑀 , ∃𝑝的坐标邻域(𝑈, 𝜑; 𝑥𝑖), s.t. ∀ ⃗𝐶 = 𝑐𝑖 ∈ ℝ(𝑖 = 𝑟 + 1,⋯,𝑚), 
𝑈 ⃗𝐶 = {𝑥𝑖 = 𝑐𝑖 : 𝑖 = 𝑟 + 1,⋯,𝑚}是𝐷的积分流形，则称分布𝐷完全可积.

由定义可知，若分布𝐷完全可积，则∀𝑝 ∈ 𝑀 , 存在𝑝的开邻域𝑈 , 以及𝑈上的向量场𝑋1 =
𝜕
𝜕𝑥1 , ⋯,𝑋𝑟 = 𝜕

𝜕𝑥𝑟 , s.t. ∀𝑞 ∈ 𝑈 , 𝐷𝑞 = 𝑈 ⃗𝐶 = span(𝑋1(𝑞),⋯,𝑋𝑟(𝑞)), 这是因为对于任意的𝑣 ∈ 𝐷𝑞, 其

作用坐标分量函数𝑥𝑟+1, ⋯𝑥𝑚都为0, 从而其线性表出的系数为0. 另外，我们注意到，此时

[𝑋𝑖, 𝑋𝑗] = 0, 𝑖, 𝑗 = 1,⋯, 𝑟. (59)

这是因为
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[𝑋𝑖, 𝑋𝑗](𝑓) =
𝜕
𝜕𝑥𝑖

( 𝜕𝑓
𝜕𝑥𝑗

)− 𝜕
𝜕𝑥𝑗

( 𝜕𝑓
𝜕𝑥𝑖

) = 0. (60)

定义(对合). 称𝑟维分布𝐷是对合的，若∀𝑝 ∈ 𝑀 , ∃𝑝的开邻域𝑈 , 以及生成𝐷的向量场𝑋1, ⋯,𝑋𝑟, 满足

[𝑋𝑖, 𝑋𝑗](𝑞) ∈ 𝐷𝑞, ∀𝑞 ∈ 𝑈 , 𝑖, 𝑗 = 1,⋯, 𝑟.

注意对合与向量场的选取无关. 不妨设𝑋′
1, ⋯,𝑋′

𝑟是另一组生成𝐷的向量场，则𝑋′
𝑖 = 𝑎𝑗𝑖𝑋𝑗, 𝑎

𝑗
𝑖 ∈

𝐶∞(𝑈), 于是[𝑋′
𝑖 , 𝑋′

𝑗] = [𝑎𝑘𝑖𝑋𝑘, 𝑎𝑙𝑗𝑋𝑙] = 𝑎𝑘𝑖 (𝑋𝑘𝑎𝑙𝑗)𝑋𝑙 − 𝑎𝑙𝑗(𝑋𝑙𝑎𝑘𝑖 )𝑋𝑘 + 𝑎𝑘𝑖 𝑎𝑙𝑗[𝑋𝑘, 𝑋𝑙], 于是∀𝑞 ∈
𝑈 , [𝑋′

𝑖 , 𝑋′
𝑗](𝑞) ∈ 𝐷𝑞.

下面给出初始版本的 Frobenius定理.

定理(Frobenius定理). 𝑟维分布𝐷是完全可积的，当且仅当𝐷是对合的.

证明：必要性易证. 为证明充分性，先引入两个引理.

∎

引理(对合的分布的性质). 设分布𝐷的对合的，则∀𝑝 ∈ 𝑀 , ∃𝑝的开邻域𝑈 , 以及𝑈上的向量场𝑋1, ⋯,𝑋𝑟生成𝐷, 

使得[𝑋𝑖, 𝑋𝑗] = 0, 𝑖, 𝑗 = 1,⋯, 𝑟.
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证明：根据对合的定义，∀𝑝 ∈ 𝑀 , ∃𝑝的坐标卡(𝑈, 𝜑; 𝑥𝑖), 以及𝑈上的向量场𝑌1, ⋯, 𝑌𝑟生成𝐷, 此时𝑌𝑎 = 𝑌 𝑖
𝑎

𝜕
𝜕𝑥𝑖 , 其中𝑌 𝑖

𝑎 ∈
𝐶∞(𝑈), 𝑎 = 1,⋯, 𝑟,注意求和指标𝑖 = 1,⋯,𝑚. 由生成基的定义，det(𝑌 𝑏

𝑎 )1≤𝑎,𝑏≤𝑟 ≠ 0. 不妨定义𝐴 = [𝑌 𝑏
𝑎 ], 𝐵 = 𝐴−1 = [𝑍𝑏

𝑎], 构
造

𝑋𝑖 = 𝑍𝑗
𝑖 𝑌𝑗 = 𝑍𝑗

𝑖 𝑌 𝑘
𝑗

𝜕
𝜕𝑥𝑘

=∑
𝑟

𝑘=1
+ ∑

𝑚

𝑘=𝑟+1
𝑍𝑗
𝑖 𝑌 𝑘

𝑗
𝜕
𝜕𝑥𝑘

= 𝜕
𝜕𝑥𝑖

+ ∑
𝑚

𝑘=𝑟+1
𝑍𝑗
𝑖 𝑌 𝑘

𝑗
𝜕
𝜕𝑥𝑘

≔ 𝜕
𝜕𝑥𝑖

+ ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑖
𝜕
𝜕𝑥𝑘

. (61)

从而

[𝑋𝑎, 𝑋𝑏] = [ 𝜕
𝜕𝑥𝑎

+ ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑎
𝜕
𝜕𝑥𝑘

, 𝜕
𝜕𝑥𝑏

+ ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑏
𝜕
𝜕𝑥𝑘

]

= [ 𝜕
𝜕𝑥𝑎

, 𝜕
𝜕𝑥𝑏

] + [ 𝜕
𝜕𝑥𝑎

, ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑏
𝜕
𝜕𝑥𝑘

] + [ ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑎
𝜕
𝜕𝑥𝑘

, 𝜕
𝜕𝑥𝑏

] + [ ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑎
𝜕
𝜕𝑥𝑘

, ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑏
𝜕
𝜕𝑥𝑘

]

= 0 + ∑
𝑚

𝑘=𝑟+1
{𝜕𝑋𝑘

𝑏
𝜕𝑥𝑎

𝜕
𝜕𝑥𝑘

+𝑋𝑘
𝑏 [

𝜕
𝜕𝑥𝑎

, 𝜕
𝜕𝑥𝑘

]}+ ∑
𝑚

𝑘=𝑟+1
{−𝜕𝑋

𝑘
𝑎

𝜕𝑥𝑏
𝜕
𝜕𝑥𝑘

+𝑋𝑘
𝑎[

𝜕
𝜕𝑥𝑘

, 𝜕
𝜕𝑥𝑏

]}+ [ ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑎
𝜕
𝜕𝑥𝑘

, ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑏
𝜕
𝜕𝑥𝑘

]

= ∑
𝑚

𝑘=𝑟+1
{𝜕𝑋𝑘

𝑏
𝜕𝑥𝑎

𝜕
𝜕𝑥𝑘

− 𝜕𝑋𝑘
𝑎

𝜕𝑥𝑏
𝜕
𝜕𝑥𝑘

}+[ ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑎
𝜕
𝜕𝑥𝑘

, ∑
𝑚

𝑘=𝑟+1
𝑋𝑘
𝑏
𝜕
𝜕𝑥𝑘

] ∈ span( 𝜕
𝜕𝑥𝑘

, 𝑘 = 𝑟 + 1,⋯,𝑚)

(62)

然而由于对合的定义，[𝑋𝑎, 𝑋𝑏](𝑞) ∈ 𝐷𝑞 = span(𝑋1(𝑞),⋯,𝑋𝑟(𝑞))，从而[𝑋𝑎, 𝑋𝑏](𝑞) = 0, ∀𝑞 ∈ 𝑈 , 𝑎, 𝑏 = 1,⋯, 𝑟.
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∎

于是由上面的证明，𝑋1, ⋯,𝑋𝑟, 𝜕
𝜕𝑥𝑟+1 , ⋯,

𝜕
𝜕𝑥𝑚线性无关. 记𝑋𝑖生成的单参数变换群为𝜎𝑖 : (−𝜀, 𝜀) ×

𝑊 → 𝑈 , 𝑊 ⊂ 𝑈 .

由 Lie导数性质，若[𝑋𝑖, 𝑋𝑗] = 0, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑟, 则(𝜎𝑖(𝑡))∗𝑋𝑗 = 𝑋𝑗，从而𝜎𝑖(𝑡)与𝜎𝑗(𝑡)可交换.

于是可以开始定理的证明.

证明：定理的证明. 取引理中的坐标卡(𝑈, 𝜑; 𝑥𝑖), 以及引理中的𝑋1, ⋯,𝑋𝑟, 𝜎𝑖(𝑡)是𝑋𝑖诱导的单参数变换群. 令𝐶𝜀 = (−𝜀, 𝜀)𝑚, 

定义𝜆 : 𝐶𝜀 → 𝑈为

𝜆(𝑡1, ⋯, 𝑡𝑟, 𝑥𝑟+1, ⋯, 𝑥𝑚) = 𝜎1(𝑡1) ∘ ⋯ ∘ 𝜎𝑟(𝑡𝑟)
(
𝜑−1

(
0,⋯, 0⏟

𝑟

, 𝑥𝑟+1, ⋯, 𝑥𝑚

)

)
 (63)

显然𝜆∗0( 𝜕
𝜕𝑡𝑖 |0) = 𝐷𝜎𝑖(𝑡𝑖)(𝑝)′(0) = 𝑋𝑖(𝑝), 𝑖 = 1,⋯, 𝑟, 𝜆∗0( 𝜕

𝜕𝑥𝑖 |0) = 𝐷𝜑−1(0,⋯,0,𝑥𝑖,0,⋯,0)′(0) =
𝜕
𝜕𝑥𝑖 |𝑝, 𝑖 = 𝑟 + 1,⋯,𝑚, 从而局部上

𝜆−1是坐标卡. 而在(𝑈, 𝜆−1; 𝑦𝑖)中，𝑋𝑖 = 𝜕
𝜕𝑦𝑖 , 𝑖 = 1,⋯, 𝑟.

从而实现了拉直.

∎



Thank You For Listening!
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