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1 Curves

1. Parametrized curves

Definition(Definition of differentiable curve). A parametrized differentiable curve is an infinitely differentiable 

map 𝛼 : 𝐼 → ℝ3 of an open interval into ℝ3.

The variable 𝑡 is called the parameter of the curve. We do not exclude 𝑎 = −∞ and 𝑏 = ∞.

The vector

𝛼′(𝑡) = (𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)) ∈ ℝ3 (1)

is called the tangent vector of the curve 𝛼 at 𝑡.

For the study of the differential geometry of a curve, it is essential to assume that there exists such a 

tangent line at every point.

Definition(Singular point, regular curve). (i) A point 𝑡 ∈ 𝐼  is called a singular point of 𝛼, if 𝛼′(𝑡) = 0.

(ii) A parametrized differentiable curve 𝛼 : 𝐼 → ℝ3 is said to be regular if 𝛼′(𝑡) ≠ 0 for all 𝑡 ∈ 𝐼 .

A parameter called arc length is usually useful in further analysis.
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Definition(Definition of Arc length). Given 𝑡0 ∈ 𝐼 , the arc length of a regular parametrized curve 𝛼 : 𝐼 → ℝ3 

from the point 𝑡0 is defined by

𝑠 = ∫
𝑡

{𝑡0}
|𝛼′(𝜏)| d𝜏, (2)

where |𝛼′(𝑡)| = √𝑥′(𝑡)2 + 𝑦′(𝑡)2 + 𝑧′(𝑡)2.

Since |𝛼′(𝑡)| > 0 for regular curve.

Now we talk about some invariance under reparametrization.

2. Vector product on 𝔼3

Definition(Equivalence: orientation). Suppose {𝑒𝑛}, {𝑓𝑛} are two basis of 𝑛-dimensional space. They are said to 

have the same orientation, denoted by 𝑒 ∼ 𝑓 , if the matrix of change of basis has positive determinant.

Easy to show that orientation satisfies the equivalent relationship.

The vector product of 𝑢 and 𝑣 (in that order) is the unique vector 𝑢 × 𝑣 ∈ ℝ3 such that

(𝑢 × 𝑣) ⋅ 𝑤 = det(𝑢, 𝑣, 𝑤), ∀𝑤 ∈ ℝ3. (3)
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Easy to show that (𝑢 × 𝑣) ⋅ 𝑢 = 0 and (𝑢 × 𝑣) ⋅ 𝑣 = 0, so 𝑢 × 𝑣 ≠ 0 is orthogonal to a plane generated 

by 𝑢 and 𝑣. To give a geometric interpretation of its norm and its direction, we proceed as follows.

Theorem(Deduction). (i) Observe that (𝑢 × 𝑣) ⋅ (𝑢 × 𝑣) = |𝑢 × 𝑣|2 > 0, so the determinant of (𝑢, 𝑣, 𝑢 × 𝑣) is 

positive and it could be a basis.

(ii) Prove that

(𝑢 × 𝑣) ⋅ (𝑥 × 𝑦) = |𝑢 ⋅ 𝑥
𝑢 ⋅ 𝑦

𝑣 ⋅ 𝑥
𝑣 ⋅ 𝑦| (4)

where 𝑢, 𝑣, 𝑥, 𝑦 are arbitrary vectors. Check for basis.

and show that

|𝑢 × 𝑣|2 = |𝑢|2|𝑣|2(1 − cos2 𝜃) = 𝐴2. (5)

(iii) The vector product is not associative. Because

(𝑢 × 𝑣) × 𝑤 = (𝑢 ⋅ 𝑤)𝑣 − (𝑣 ⋅ 𝑤)𝑢, (6)

and check for all basis.
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3. The local theory of curves

3.1. Curvature

Let 𝑠 be the arc length, and 𝛼 be parametrized by 𝑠. 𝛼′(𝑠) has unit length, and |𝛼″(𝑠)| measures how 

rapid the curve pulls away from the tangent line 𝛼′(𝑠), in the neighborhood of 𝑠.

Definition(Curvature of a curve). Let 𝛼 : 𝐼 → 𝔼3 be a curve parametrized be arc length 𝑠 ∈ 𝐼 . The number 𝜅(𝑠) ≔
|𝛼″(𝑠)| is called the curvature of 𝛼 at 𝑠.

Easy to show that for straight line, 𝛼 = 𝑢𝑠 + 𝑣, if and only if 𝜅(𝑠) = 0. If we have 𝜅(𝑠) ≠ 0 unless for 

𝑠 = 𝑠0, we could still find its curvature by leveraging the limit. If for its neighborhood, 𝜅(𝑠) = 0, then 

it is a straight line.

When change the direction, we have tangent vector changes but the curvature does not. This is because, 

let 𝛽(𝑠) = 𝛼(−𝑠), then

d𝛽(𝑠)
d𝑠

= d𝛼(−𝑠)
d𝑠

= (−1)d𝛼(−𝑠)
d(−𝑠)

. (7)
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If 𝜅(𝑠) ≠ 0, then we have a unit normal vector 𝑛 well defined by 𝛼″(𝑠) = 𝜅(𝑠)𝑛(𝑠). The plane 

composed by 𝑡 and 𝑛 are called the osculating plane at 𝑠.

Example. For 𝜅(𝑠) = 0, check the following example.

𝛼(𝑡) =

{


(𝑡, 0, 𝑒−

1
𝑡2), 𝑡 > 0

(0, 0, 0), 𝑡 = 0
(𝑡, 𝑒−

1
𝑡2 , 0), 𝑡 < 0.

(8)

To proceed with the local analysis of curves, we assume 𝛼″(𝑠) ≠ 0 (the singular point of order 1, and 

𝛼′(𝑠) = 0 is called the singular point of order 0).

For a plane curve, we have the following description.

Example. Assume that 𝛼(𝐼) ⊂ 𝔼2 and give 𝜅 a sign as in the text.

Transport the vectors 𝑡(𝑠) parallel to themselves in such a way that the origins of 𝑡(𝑠) agree with the origin of 𝔼2; the 

end points of 𝑡(𝑠) then describe a parametrized curve 𝑠 → 𝑡(𝑠) called the indicatrix of tangents of 𝛼.

Let 𝜃(𝑠) be the angle from 𝑒1 to 𝑡(𝑠) in the orientation of 𝔼2. notice that we are assuming that 𝜅 ≠ 0. Show that
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(a) The indicatrix of tangents is a regular parametrized curve.

(b) d𝑡/ d𝑠 = (d𝜃/ d𝑠)𝑛, that is, 𝜅 =d𝜃/ d𝑠.

Proof： (a) Easy to see since |𝑡′(𝑠)| = |𝜅(𝑠)| ≠ 0.

(b) Let

𝑡(𝑠) = [cos 𝜃(𝑠), sin 𝜃(𝑠)], (9)

then

𝑡′(𝑠) = [− sin 𝜃(𝑠), cos 𝜃(𝑠)]𝜃′(𝑠) = 𝜃′(𝑠)𝑛, (10)

since we have 𝑛 = 𝑗𝑡 (rotation by 𝜋2 ).

∎

3.2. Tortion

Already we have 𝑡′ = 𝜅𝑛. Now we do not check 𝑛′, but check 𝑏(𝑠) ≔ 𝑡(𝑠) × 𝑛(𝑠), which is called 

binormal vector at 𝑠, also a unit vector representing the osculating plane. |𝑏′(𝑠)| meausres the rate of 

change of the neighboring osculating plane. We claim that 𝑏′(𝑠) is parallel with 𝑛(𝑠). Indeed,

𝑏′ = 𝑡′ × 𝑛 + 𝑡 × 𝑛′ = 𝑡 × 𝑛′. (11)
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The focus is not 𝑛′, but 𝑡 ⟂ 𝑏′. With 𝑏′ ⟂ 𝑏, we have the result.

Extract the number out and define 𝑏′(𝑠) = 𝜏(𝑠)𝑛(𝑠) to be the following concept.

Definition(Definition of tortion). Let 𝛼 : 𝐼 → 𝔼3 be a curve parametrized be arc length 𝑠 ∈ 𝐼  such that 𝛼″(𝑠) ≠ 0. 

The number 𝜏(𝑠) ≔ |𝑏′(𝑠)| is called the tortion of 𝛼 at 𝑠.

Also, 𝛼 is a plane curve, if and only if |𝑏′(𝑠)| ≡ 0. Necessarily speaking, it is easy. On the other hand, 

we shall show that 𝑏(𝑠) ≔ 𝑏0, take a inner product 𝛼(𝑠) ⋅ 𝑏0 and check it is also a constant, which is 

exactly the parametrized form of plane.

Tortion could be either positive or negative.

3.3. Frenet trihedron

We have associated three orthonomal unit vector 𝑡(𝑠), 𝑛(𝑠), 𝑏(𝑠), which is referred to as the Frenet 

trihedron at 𝑠. And we already known that 𝑡′ = 𝜅𝑛, and 𝑏′ = 𝜏𝑛, for 𝑛 = 𝑏 × 𝑡 we

𝑛′ = 𝑏′ × 𝑡 + 𝑏 × 𝑡′ = −𝜏𝑏 − 𝜅𝑡. (12)

We call the above three equations the Frenet formulas.
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Now we give the core theorem of this chapter.

Theorem(Fundamental theorem of the local theory of curves). Given differentiable functions 𝜅(𝑠) > 0 and 𝜏(𝑠), 
𝑠 ∈ 𝐼 , there exsits a regular parametrized curve 𝛼 : 𝐼 → 𝔼3 such that 𝑠 is the arc length, 𝜅(𝑠) is the curvature, and 

𝜏(𝑠) is the tortion of 𝛼.

Moreover, any other curve 𝛼, which satisfies the same condition, differs from 𝛼 by a rigid motion. That is, there 

exists a orthonormal map 𝜌 with positive determinant, and a translation vector 𝑐, such that 𝛼 = 𝜌 ∘ 𝛼 + 𝑐.

Proof： Proof for uniqueness. (Details omitted)

Proof for existence. This is by ODEs theory.

∎

For plane curve, we could have a simpler version of the above theorem.

Example. Given a function 𝜅(𝑠), show that the parametrized plane curve have 𝜅 as curvature is given by

𝛼(𝑠) = (∫cos 𝜃(𝑠) d𝑠 + 𝑎,∫ sin 𝜃(𝑠) d𝑠 + 𝑏) (13)
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where 𝜃(𝑠) = ∫𝜅(𝑠) d𝑠 + 𝜑. The curve is determined up to a translation of the vector (𝑎, 𝑏) and a rotation of the 

angle 𝜑.

3.4. Calculations

For general regular parametrized curve 𝛼(𝑡), we have the following formula for calculating the 

geometric variables.

Theorem(Calculations of curvature). (i) generally speaking, we have

𝜅(𝑡) = |𝛼′(𝑡) × 𝛼″(𝑡)|
|𝛼′(𝑡)|3

. (14)

(ii) for plane curve 𝛼′(𝑡) = [𝑥(𝑡), 𝑦(𝑡)], we have signed curvature

𝜅(𝑡) = 𝑥′𝑦″ − 𝑦′𝑥″

|𝑥′2 + 𝑦′2|32
. (15)

Theorem(Calculation of tortion). Generally speaking, we have

𝜏(𝑡) = −det(𝛼′(𝑡), 𝛼″(𝑡), 𝛼‴(𝑡))
|𝛼′(𝑡) × 𝛼″(𝑡)|2

. (16)
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Proof：

∎

4. The local canonical form

Let 𝛼 : 𝐼 → 𝔼3 be a curve parametrized by arc length without singular points of order 1. We now 

consider the equations in a neighborhood of 𝑠0 using the trihedron 𝑡(𝑠0), 𝑛(𝑠0), 𝑏(𝑠0) as a basis for 𝔼3. 

We may assume without loss of generality, that 𝑠0 = 0, and consider Taylor expansion

𝛼(𝑠) − 𝛼(0) = 𝛼′(0)𝑠 + 1
2
𝛼″(0)𝑠2 + 1

6
𝛼‴(0)𝑠3 + 𝑅(𝑠), (17)

where 
𝑅(𝑠)
𝑠3 → 𝟎 as 𝑠 → 0. Using 𝛼′(0) = 𝑡, 𝛼″(0) = 𝜅𝑛, and 𝛼‴(0) = (𝜅𝑛)′ = 𝜅′𝑛 − 𝜅2𝑡 − 𝜅𝜏𝑏, we 

rewrite the above equation sorted by 𝑡, 𝑛, 𝑏

𝛼(𝑠) − 𝛼(0) = (𝑠 − 1
6
𝜅2𝑠3)𝑡 + (1

2
𝜅𝑠2 − 1

6
𝜅′𝑠3)𝑛 − 1

6
𝜅𝜏𝑠3𝑏 + 𝑅(𝑠), (18)

with
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{


𝑥(𝑠) = 𝑠 − 1

6𝜅2𝑠3 + 𝑅𝑥
𝑦(𝑠) = 1

2𝜅𝑠2 − 1
6𝜅′𝑠3 + 𝑅𝑦

𝑧(𝑠) = −1
6𝜅𝜏𝑠3 + 𝑅𝑧

(19)

which is called the local canonical form of 𝛼.

5. Classical form of curves

Example. Given the parametrized curve

𝛼(𝑠) = (𝑎 cos(𝑠
𝑐
), 𝑎 sin(𝑠

𝑐
), 𝑏𝑠

𝑐
) (20)

where 𝑐2 = 𝑎2 + 𝑏2. Show that

(a) 𝑠 is the arc length. (i.e. |𝛼′(𝑠)| = 1).

(b)

𝜅(𝑠) = |𝑎|
𝑐2

, 𝜏(𝑠) = 𝑏
𝑐2

. (21)
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Example. A curve 𝛼 is called a helix if the tangent line of 𝛼 make a constant angle with a fixed direction. Assume 

𝜏(𝑠) ≠ 0, 𝑠 ∈ 𝐼 , show the following statements are equivalent:

(i) 𝛼 is a helix,

(ii) 𝜅/𝜏 = const.

(iii) the lines containing 𝑛(𝑠) and passing 𝛼(𝑠) are parallel to a fixed plane.

(iv) the lines containing 𝑏(𝑠) and passing 𝛼(𝑠) make a constant angle with a fixed direction.
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1. Regular surfaces

Before stepping into the definition of regular curves, we have to define a differential of a map.

Definition(Definition of a differential of a map). Let 𝐹 : 𝑈 ⊂ 𝔼𝑛 → 𝔼𝑚 be a differentiable map, i.e. each 

component function has continuous partial derivatives w.r.t each variable. 𝑝 ∈ 𝑈 . A linear map d𝐹𝑝 : 𝔼𝑛 → 𝔼𝑚 is 

called the differential of 𝐹  at 𝑝, and is defined as follows.
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Let 𝑤 ∈ 𝔼𝑛 and 𝛼 : (−𝜀,+𝜀) → 𝑈  is a differentiable curve such that 𝛼(0) = 𝑝, 𝛼′(0) = 𝑤. Then by chain rule, 𝛽 =
𝐹 ∘ 𝛼 : (−𝜀,+𝜀) → 𝔼𝑚 is also differentiable. Then

d𝐹𝑝(𝑤) ≔ 𝛽′(0). (22)

Theorem(Differential of a map is independent of choice of curves). The above definition of d𝐹𝑝 does not depend 

on the choice of the curve which passes through 𝑝 with tangent vector 𝑤.

Proof： We prove the case when 𝑛 = 2,𝑚 = 3. Let 𝛼(𝑡) = (𝑢(𝑡), 𝑣(𝑡))𝑇 , and 𝐹(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣))𝑇 , then

𝛽′(0) =

(




𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑢

𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑣)





(
𝜕𝑢
𝜕𝑡
𝜕𝑣
𝜕𝑡

) =d𝐹𝑝(𝑤). (23)

which is a linear map.

Actually the above map has a matrix in canonical bases, which is usually called the Jacobian matrix.

∎

Definition(definition of regular surfaces). A subset 𝑆 ⊂ 𝔼3 is a regular surface if for each 𝑝 ∈ 𝑆, there exists a 

neighborhood 𝑉  in 𝔼3 and a map 𝒙 : 𝑈 → 𝑉 ∩ 𝑆 of an open set 𝑈 ∈ 𝔼2 onto 𝑉 ∩ 𝑆 ⊂ 𝔼3 such that
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(i) 𝒙 is differentiable, i.e.

𝒙(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)), (𝑢, 𝑣) ∈ 𝑈 (24)

whose component functions have continuous partial derivatives of all orders in 𝑈 .

(ii) 𝒙 is a homeomorphism.

(iii) regularity condition. For each 𝑞 ∈ 𝑈 , the differential d𝒙𝑞 : 𝔼2 → 𝔼3 is one-to-one.

Condition (i) is necessary if we want to do some geometric analysis on 𝑆. The homeomorphism in 

Condition (ii) prevents the self-intersections in regular surfaces, otherwise it would induce ambiguous 

tangent plane at the intersection point. Condition (iii) guarantee the existence of a tangent plane at all 

points of 𝑆. A more familiar form of condition (iii) is given as follows.

Theorem(Interpretation of condition (iii)). Let us compute the matrix of the linear map d𝒙𝑞 in the canonical bases 

𝑒1, 𝑒2 of ℝ2 with coordinate (𝑢, 𝑣) and 𝑓1, 𝑓2, 𝑓3 of ℝ3 with coordinate (𝑥, 𝑦, 𝑧).

Let 𝑞 = (𝑢0, 𝑣0), then 𝑒1 = (1, 0) is tangent to the curve 𝑢 ↦ (𝑢, 𝑣0) on ℝ2 whose image is 𝑢 ↦
(𝑥(𝑢, 𝑣0), 𝑦(𝑢, 𝑣0), 𝑧(𝑢, 𝑣0)) (This image curve is called the coordinate curve 𝑣 = 𝑣0, or with ODE d𝑣 = 0), which 

lies on 𝑆 and has a tangent vector at 𝒙𝑞
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𝜕𝒙
𝜕𝑢

= (𝜕𝑥
𝜕𝑢

, 𝜕𝑦
𝜕𝑢

, 𝜕𝑧
𝜕𝑢

)
𝑇

=d𝒙𝑞(𝑒1). (25)

Similarly, we have

𝜕𝒙
𝜕𝑣

= (𝜕𝑥
𝜕𝑣

, 𝜕𝑦
𝜕𝑣

, 𝜕𝑧
𝜕𝑣

)
𝑇

=d𝒙𝑞(𝑒2). (26)

So we could write the matrix of d𝒙𝑞

[




𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑢

𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑣]




. (27)

condition (iii) requires the matrix to be full rank. Equivalently speaking, we need 𝜕𝒙
𝜕𝑢 × 𝜕𝒙

𝜕𝑣 ≠ 0; or one of the minors 

of order 2 of the matrix of d𝒙𝑞, that is, one of the Jacobian determinants

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

, 𝜕(𝑦, 𝑧)
𝜕(𝑢, 𝑣)

, 𝜕(𝑥, 𝑧)
𝜕(𝑢, 𝑣)

(28)
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does not vanish at 𝑞.

Condition (iii) is also of great importance for 𝒙−1 to be a so-called differentiable function, that is, if we 

lift its range to three dimension, then the map is differentiable. Details could be found in Change of 

parameters.

Actually, it would be tiresome if we test all the three conditions one by one. The following theorems 

gives a cheaper method to the testing by utilizing the image of a multi-variable function.

1.1. Images

Theorem(images implies regularity). If 𝑓 : 𝑈 → 𝔼 ∈ 𝐶1(𝑈) where 𝑈 ⊂ 𝔼2 is an open set, then the graph of 𝑓 , 

viewed in 𝔼3, i.e. the subset of 𝔼3 given by (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) for (𝑥, 𝑦) ∈ 𝑈  is a regular surface.

Proof： Easy to show that condition (i) and (iii) are satisfied by taking derivatives and showing that 
𝜕(𝑥,𝑦)
𝜕(𝑢,𝑣) = 1. As for condition (ii), 

we only need to show that 𝒙−1 is continuous, which is obvious if we check it as a projection from 𝔼3 onto 𝔼2.

∎

Now we give some definitions about the following application.



2 Surfaces

Definition(regular point, critical point). Given a differentiable map 𝐹 : 𝑈 ⊂ 𝔼𝑛 → 𝔼𝑚 where 𝑈  is open, a point 

𝑝 ∈ 𝑈  is called a critical point of 𝐹  if the differential d𝐹𝑝 : 𝔼𝑛 → 𝔼𝑚 is not a surjective mapping.

The image 𝐹(𝑝) ∈ 𝔼𝑚 of a critical point is called the critical value of 𝐹 . A non-critical value of 𝔼𝑚 is called the 

regular value of 𝐹 .

The above terminology is inspired by a real-valued function of a real variable.

Example. Now particularly we consider 𝑓 : 𝑈 ⊂ 𝔼3 → 𝔼, which takes 𝑚 = 1, 𝑛 = 3. With a similar logic as we 

have in Interpretation of condition (iii), for canonical bases 𝑓1, 𝑓2, 𝑓3, we have the matrix form

d𝑓𝑝 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧). (29)

In this case, d𝑓𝑝 is not surjective at 𝑝, iff 𝑓𝑥 = 𝑓𝑦 = 𝑓𝑧 = 0 at 𝑝.

From the above multi-variable function, we could find a regular surface.

Theorem(regular surfaces by images). If 𝑓 : 𝑈 ⊂ 𝔼3 → 𝔼 is a differentiable function and 𝑎 ∈ 𝑓(𝑈) is a regular 

value of 𝑓 , then 𝑓−1(𝑎) is a regular surface in 𝔼3.

Actually, this is a trick that we choose a plane in 𝔼3 to find a regular surface. The image of 𝑓  corresponds to a image 

of another function ℎ which could give an arbitrary regular surface.
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Proof： Let 𝑝 = (𝑥0, 𝑦0, 𝑧0) be a point of 𝑓−1(𝑎). Since 𝑎 is a regular value of 𝑓 , we may assume without loss of generality that 

𝑓𝑧 ≠ 0 at 𝑝. Then define a map like an image

𝐹(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦, 𝑧))𝑇 (30)

and we indicate by (𝑢, 𝑣, 𝑡) the coordinates of a point in 𝔼3 where 𝐹  takes its values. The matrix of the differential map d𝐹𝑝 is given 

by

d𝐹𝑝 =
[

 1

0
𝑓𝑥

0
1
𝑓𝑦

0
0
𝑓𝑧]




(31)

as we illustrated in special case for function on 𝔼3. Whence det(d𝐹𝑃 ) = 𝑓𝑧 ≠ 0. We may apply the inverse function theorem, which 

guarantees the existence of neighborhood 𝑉  of 𝑝 and 𝑊  of 𝐹(𝑝) such that 𝐹 : 𝑉 → 𝑊  is invertible, and the inverse 𝐹−1 : 𝑊 → 𝑉  

is differentiable. It follows that

𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑔(𝑢, 𝑣, 𝑡), (𝑢, 𝑣, 𝑡) ∈ 𝑊 (32)

are differentiable. In particular, 𝑧 = 𝑔(𝑢, 𝑣, 𝑡 = 𝑎) = ℎ(𝑥, 𝑦) is differentiable defined in the projection of 𝑉  onto 𝑥𝑦 plane. To use the 

previous proposition, we only have to show that ℎ is differentiable.
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Since

𝐹(𝑓−1(𝑎) ∩ 𝑉 ) = {(𝑢, 𝑣, 𝑡) : 𝑡 = 𝑎} ∩ 𝑊 (33)

we conclude that the graph of ℎ (i.e. 𝑧) is 𝑓−1(𝑎) ∩ 𝑉 . By images implies regularity, we have 𝑓−1(𝑎) ∩ 𝑉  is a coordinate 

neighborhood of 𝑝. Therefore, every point 𝑝 ∈ 𝑓−1(𝑎) can be covered by a coordinate neighborhood and 𝑓−1(𝑎) is a regular surface.

∎
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It would be good if readers could recall the implicit function theorem and its application – inverse 

function theorem.

The following proposition shows that any regular surface is locally the graph of a differentiable 

function.

Theorem(Find differentiable function using projection). Let 𝑆 ⊂ 𝔼3 is a regular surface, and 𝑝 ∈ 𝑆. Then there 

exists a neighborhood 𝑉  of 𝑝 in 𝑆 such that 𝑉  is the graph of a differentiable function, which belongs to one of the 

three forms 𝑧 = 𝑓(𝑥, 𝑦), 𝑦 = 𝑔(𝑥, 𝑧), 𝑥 = ℎ(𝑦, 𝑧).

Proof： Using projection and by inverse function theorem. Without generality, we assume

𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

≠ 0. (34)

We shall find an inverse function of 𝜋 ∘ 𝒙, denoted by (𝜋 ∘ 𝒙)−1 and compose it with 𝑧 = 𝑧(𝑢, 𝑣), we could have

𝑧 = 𝑧(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) ≔ 𝑓(𝑥, 𝑦) (35)

which is also differentiable.
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∎

Using the above proposition, we claim that, for a regular surface, and any other parametrization 𝒙, we 

do not need to test continuity of 𝒙−1, provided that the other conditions hold.

Example. Example. Show that one-sheeted cone, with its vertex at the origin, i.e.

𝑆 = {(𝑥, 𝑦, 𝑧) : 𝑧2 = 𝑥2 + 𝑦2, 𝑧 ≥ 0} (36)
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is not a regular surface.

Proof： The problem is at the origin. By

𝑧 = +√𝑥2 + 𝑦2 (37)

is not differentiable at (0, 0).

∎

Theorem(omit the test of continuity of inverse map). Let 𝑝 ∈ 𝑆 be a point of a regular surface 𝑆 and 𝒙 : 𝑈 ⊂
𝔼2 → 𝔼3 is a parametrization with 𝑝 ∈ 𝒙(𝑈) such that condition 1 and 3 of definition of regular surfaces hold. 

Assume 𝒙 is one-to-one, then 𝒙−1 is continuous.

2. Change of parameters

Theorem(Differentiability of change of parameters). Let 𝑝 be a point in a regular surface 𝑆 ⊂ 𝔼3, and two 

parametrizations 𝒙 : 𝑈 ⊂ 𝔼2 → 𝔼3 and 𝒚 : 𝑉 ⊂ 𝔼2 → 𝔼3, parametrized by (𝑢, 𝑣) and (𝜉, 𝜂), respectively. Suppose 

𝑝 ∈ 𝒙(𝑈) ∩ 𝒚(𝑉 ) = 𝑊 . Then the change of parameters ℎ = 𝒙−1 ∘ 𝒚 : 𝒚−1(𝑊) → 𝒙−1(𝑊) is a diffeomorphism.

Proof： Utilizing the map

𝐹(𝑢, 𝑣, 𝑡) → (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣) + 𝑡), (𝑢, 𝑣) ∈ 𝑈 (38)
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is a diffeomorphism by condition (iii). Restrict the map on a slice 𝑈 × {0} and 𝐹−1 is differentiable.

Check the following figure.

∎
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The definition of differentiability could be extended to mappings between surfaces by utilizing the 

differentiability of maps between plane parameters.

Definition(differentiability of maps between surfaces). A continuous map 𝜑 : 𝑉1 ⊂ 𝑆1 → 𝑆2 of an open set 𝑉1 of a 

regular surface 𝑆1 to a regular surface 𝑆2, is said to be differentiable at 𝑝 ∈ 𝑉1, if for given parametrization

𝒙1 : 𝑈1 ⊂ 𝔼2 → 𝑆1, 𝒙2 : 𝑈2 ⊂ 𝔼2 → 𝑆2, (39)

with 𝑝 ∈ 𝒙1(𝑈1) and 𝜑(𝒙1(𝑈1)) ⊂ 𝒙2(𝑈2), the map composition

𝒙−1
2 ∘ 𝜑 ∘ 𝒙1 : 𝑈1 → 𝑈2 (40)

is differentiable at 𝑞 = 𝒙−1
1 (𝑝).
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Two surfaces 𝑆1 and 𝑆2 are diffeomorphic, if there exists a differentiable map 𝜑 : 𝑆1 → 𝑆2 with a differentiable 

inverse 𝜑−1𝑆2 → 𝑆1. Such a map 𝜑 is called a diffeomorphism between 𝑆1 and 𝑆2.
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Example. Example. If 𝒙 : 𝑈 ⊂ 𝔼2 → 𝑆 is a parametrization, then 𝒙−1 : 𝒙(𝑈) → 𝔼2 is differentiable. This means 

every regular surface is locally diffeomorphic to a plane. This is useful in manifold learning.

Proof： Just check the differentiability of the map 𝐼 ∘ 𝒙−1 ∘ 𝒚 for any two given parametrizations.

∎

Example. Example. Let 𝑆1 and 𝑆2 be regular surfaces. Assume that 𝑆1 ⊂ 𝑉 ⊂ 𝔼3, 𝑉  is an open set of 𝔼3. Suppose 

𝜑 : 𝑉 → 𝔼3 is a differentiable map such that 𝜑(𝑆1) ⊂ 𝑆2. Then the restriction 𝜑|𝑆1
: 𝑆1 → 𝑆2 is a differentiable 

map. The followings are some applications.

(i) Symmetry. 𝑆 is a symmetric surface relative to 𝑥𝑦 plane. Then the differentiable map 𝜎 : 𝔼3 → 𝔼3 defined by

𝜎(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦,−𝑧) (41)

is differentiable restricted on 𝑆.

(ii) Rotations. 𝑆 is a regular surface invariant by rotation 𝑅𝑧,𝜃, which denotes a rotation of angle 𝜃 about 𝑧 axis. 

Then the restriction

𝑅𝑧,𝜃 : 𝑆 → 𝑆 (42)

is differentiable.
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(iii) Stretching operation. Let 𝜑 : 𝔼3 → 𝔼3 is a stretching map given by

𝜑(𝑥, 𝑦, 𝑧) = (𝑎𝑥, 𝑏𝑦, 𝑐𝑧), 𝑎, 𝑏, 𝑐 ≠ 0. (43)

Then 𝜑 : 𝑆2 → ellipsoid

{(𝑥, 𝑦, 𝑧) ∈ 𝔼3 : 𝑥2

𝑎2 + 𝑦2

𝑏2
+ 𝑧2

𝑐2
= 1} (44)

is differentiable.

Proof：

∎

Now we could define a regular curve using concept of maps.

Definition(definition of regular curve). A regular curve in 𝔼3 is a subset 𝐶 ⊂ 𝔼3 with the following properties. 

For each 𝑝 ∈ 𝐶, there exists a neighborhood 𝑉 ⊂ 𝔼3 of 𝑝 and a differentiable map 𝛼 : 𝐼 ⊂ 𝔼 → 𝐶 ∩ 𝑉  such that the 

differential d𝛼𝑡 is one-to-one for each 𝑡 ∈ 𝐼 .

It is of the same logic to show that change of parameters of curves is given by a diffeomorphism.
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By change of parameters, we could find properties independent of parameters, that is, the geometric 

properties.

3. The tangent plane

Note in the following, 𝑞 is at the plane, 𝑝 is on the regular surface in 𝔼2, and 𝑤 is a velocity vector of a 

regular surface at 𝑝.

Theorem(Two ways of viewing tangent plane, definition of tangent plane is independent of parameters). Let 

𝒙 : 𝑈 ⊂ 𝔼2 → 𝑆 be a parametrization of a regular surface, 𝑞 ∈ 𝑈  is on the plane. The vector subspace of dimension 

2,

d𝒙𝑞(𝔼2) ⊂ 𝔼3 (45)

coincides with the set of tangent vectors to 𝑆 at 𝒙𝑞.

Proof： Let 𝑤 be a tangent vector at 𝒙(𝑞), i.e. 𝑤 = 𝛼′(0), where 𝛼 : (−𝜀,+𝜀) → 𝒙(𝑈) ⊂ 𝑆 is differentiable and 𝛼(0) = 𝒙(𝑞). By 

differentiability of parametrization, we have the composition 𝛽 = 𝒙−1 ∘ 𝛼 : (−𝜀,+𝜀) → 𝑈  is differentiable. Take a differential, and 

we have d𝒙𝑞(𝛽′(0)) = 𝑤, so 𝑤 ∈d𝒙𝑞(𝔼2).
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On the other hand, let 𝑤 =d𝒙𝑞(𝑣), where 𝑣 ∈ 𝔼2, which is the velocity vector of the curve 𝛾 : (−𝜀,+𝜀) → 𝑈  given by

𝛾(𝑡) = 𝑡𝑣 + 𝑞, 𝑡 ∈ (−𝜀,+𝜀). (46)

by Definition of a differential of a map, we have d𝒙𝑝(𝑣) = 𝛼′(0), with 𝛼 = 𝒙 ∘ 𝛾.

∎
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From the above definition, the plane d𝒙𝑞(𝔼2) which passes 𝒙(𝑞) = 𝑝, does not depend on the 

parametrization 𝒙. This plane is called the tangent plane to 𝑆 at 𝑝, denoted by 𝑇𝑝(𝑆).

Write its bases as follows

𝒙𝑢 ≔ 𝜕𝒙
𝜕𝑢

, 𝒙𝑣 ≔ 𝜕𝒙
𝜕𝑣

. (47)

Then the parametrization of vector 𝑤 ∈ 𝑇𝑝(𝑆) are determined by

𝑤 = 𝛼′(0) = d(𝒙 ∘ 𝛽)
d𝑡

= 𝒙𝑢(𝑞)𝑢′(0) + 𝒙𝑣(𝑞)𝑣′(0). (48)

Theorem(Differential of a map between surfaces). Let 𝑆1, 𝑆2 be two regular surfaces and 𝜑 : 𝑉 ∈ 𝑆1 → 𝑆2 is a 

differentiable map of an open set 𝑉  of 𝑆1 into 𝑆2. Given tangent vector 𝑤 = 𝛼′(0) ∈ 𝑇𝑝(𝑆1), let 𝛽 : 𝜑 ∘ 𝛼 with 

𝛽(0) = 𝜑(𝑝). Then 𝛽′(0) does not depend on the choice of 𝛼. The map d𝜑𝑝 : 𝑇𝑝(𝑆1) → 𝑇𝜑(𝑝)(𝑆2) defined by 

d𝜑𝑝(𝑤) = 𝛽′(0) is linear.

Proof： Take the partial derivatives and the proof is similar as we have in Differential of a map is independent of choice of curves.

∎
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4. The first fundamental form

Definition(Definition of the first fundamental form of surfaces). The first fundamental form of the regular surface 

𝑆 at point 𝑝 ∈ 𝑆 is defined by 𝐼𝑝 : 𝑇𝑃(𝑆) → ℝ

𝐼𝑝(𝑤) = ⟨𝑤,𝑤⟩ = |𝑤|2 ≥ 0. (49)

For a parametrization of 𝐼𝑝, assume we have 𝒙(𝑢, 𝑣), 𝛼 : (−𝜀,+𝜀) → 𝑆, with 𝛼(0) = 𝑝, with 𝛼′(0) = 𝑤, then

𝐼𝑝(𝑤) = ⟨𝑤,𝑤⟩

= ⟨𝒙𝑢𝑢′ + 𝒙𝑣𝑣′, 𝒙𝑢𝑢′ + 𝒙𝑣𝑣′⟩

= |𝒙𝑢|
2(𝑢′)2 + 𝒙𝑢 ⋅ 𝒙𝑣𝑢′𝑣′ + |𝒙𝑣|

2(𝑣′)2

≔ 𝐸(𝑢′)2 + 2𝐹𝑢′𝑣′ + 𝐺(𝑣′)2.

(50)

Now we could give some typical examples.

Example. Example. Calculate the first fundamental form of the regular surfaces.

(i) Plane. A plane that passes through 𝑝 = (𝑥0, 𝑦0, 𝑧0) and contain 𝑤1 = (𝑎1, 𝑎2, 𝑎3) and 𝑏2 = (𝑏1, 𝑏2, 𝑏3), is given 

by
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𝒙(𝑢, 𝑣) = 𝑝 + 𝑢𝑤1 + 𝑣𝑤2. (51)

where 𝑈 = ℝ2.

(ii) The cylinder over the circle 𝑥2 + 𝑦2 = 1, is given by

𝒙(𝑢, 𝑣) = (cos 𝑢, sin 𝑢, 𝑣). (52)

where 𝑈 = {(𝑢, 𝑣) : 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ ℝ}.

(iii) Helicoid generated by a helix (cos 𝑢, sin 𝑢, 𝑎𝑢) given by

𝒙(𝑢, 𝑣) = (𝑣 cos 𝑢, 𝑣 sin 𝑢, 𝑎𝑢) (53)

where 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ ℝ.

(iv) Sphere. A sphere given by

𝒙(𝑢, 𝑣) = (cos 𝑢 cos 𝑣, cos 𝑢 sin 𝑣, sin 𝑢) (54)

where 𝑢 ∈ (0, 2𝜋), 𝑣 ∈ (0, 𝜋).

Practically speaking, if we know 𝐼𝑝, then we could calculate some geometric quantity.



2 Surfaces

Theorem(calculations of geometric quantity on a regular surface). (i) arc length.

𝑠(𝑡) = ∫
𝑡

0
|𝛼′(𝜏)| d𝜏

= ∫
𝑡

0

√|𝛼′(𝜏)|2 d𝜏

= ∫
𝑡

0
√𝐼(𝛼′(𝜏)) d𝜏

(55)

(ii) vector angle.

cos 𝜃 = ⟨𝛼′(𝑡0), 𝛽′(𝑡0)⟩
|𝛼′(𝑡0)||𝛽′(𝑡0)|

). (56)

(iii) Area. Let 𝑅 ∈ 𝑆 be a bounded region of a regular surface contained in the coordinate neighborhood of the 

parametrization 𝒙 : 𝑈 ⊂ 𝔼2 → 𝑆. The positive number

𝐴(𝑅) ≔ ∫
𝑄
|𝒙𝑢 × 𝒙𝑣| d𝑢 d𝑣, 𝑄 = 𝒙−1(𝑅). (57)
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is called the area of 𝑅. In actual calculations, we have

|𝒙𝑢 × 𝒙𝑣| = √|𝒙𝑢|
2|𝒙𝑣|

2 − |𝒙𝑢 ⋅ 𝒙𝑣|
2 =

√
𝐸𝐺 − 𝐹 2. (58)
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3 Gauss map

Given a parametrization 𝒙 : 𝑈 ⊂ 𝔼2 → 𝑆 of a regular surface at a point 𝑝 ∈ 𝑆, we could choose a unit 

normal vector at each point of 𝒙(𝑈) by

𝑁(𝑝) = 𝒙𝑢 × 𝒙𝑣
|𝒙𝑢||𝒙𝑣|

(𝑝), 𝑝 ∈ 𝒙(𝑈). (59)

Thus we have a differentiable map 𝑁 : 𝑈 ⊂ 𝔼2 → ℝ3. More generally, if 𝑉 ∈ 𝑆 is an open set in 𝑆 and 

𝑁 : 𝑉 → ℝ3 is a differentiable map which associates to each 𝑝 ∈ 𝑉  a unit normal vector at 𝑝, we say 

that 𝑁  is a differentiable field of unit normal vectors on 𝑉 .

Not all surfaces admit a differentiable field of unit vectors defined on the whole surface. For instance, 

the Mobius strip.

Definition(definition of Gauss map). Let 𝑆 ⊂ 𝔼3 be a regular surface with an orientation 𝑁 . The map 𝑁 : 𝑆 → ℝ3 

takes its values at the unit sphere

𝑆2 = {(𝑥, 𝑦, 𝑧) : 𝑥2 + 𝑦2 + 𝑧2 = 1} (60)

thus 𝑁 : 𝑆 → 𝑆2 is called the Gauss map of 𝑆.
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Gauss map is differentiable. The differential d𝑁𝑝 of 𝑁  at 𝑝 ∈ 𝑆 is a linear map from 𝑇𝑝(𝑆) to 

𝑇{𝑁(𝑝)}(𝑆2). Since the two are the same space, d𝑁𝑝 could be looked upon as a linear map on 𝑇𝑝(𝑆).

Example. Example. check the differential of 𝑁  of each surfaces.

(i) Plane. Norm vector is a constant, so d𝑁𝑝 ≡ 0.

(ii) Unit Sphere. Norm vector 𝑁 = (𝑥, 𝑦, 𝑧) and d𝑁𝑝(𝑣) = 𝑣.

(iii) Cylinder, i.e. 𝑥2 + 𝑦2 = 1. Norm vector 𝑁 = (𝑥, 𝑦, 0), and

d𝑁𝑝(𝑣) = {𝜃, 𝑣 = (0, 0, 𝑧)
𝑣, 𝑣 = (𝑥, 𝑦, 0). (61)

Proof： Considering a curve in the surface.

∎

The following is a fact about the differential of Gauss map.

Theorem(Self-adjoint map of the differential map of Gauss map). The differential d𝑁𝑝 : 𝑇𝑝(𝑆) → 𝑇{𝑝}(𝑆) of the 

Gauss map at point 𝑝 ∈ 𝑆 is a self-adjoint linear map.
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Proof： We shall show that ⟨ d𝑁𝑝(𝑤1), 𝑤2⟩ = ⟨𝑤1, d𝑁𝑝(𝑤2)⟩.

Now we assume 𝒙(𝑢, 𝑣) be a parametrization of 𝑆 at 𝑝, {𝒙𝑢, 𝒙𝑣} is the associated basis of 𝑇𝑝(𝑆). If 𝛼(𝑡) = 𝒙(𝑢(𝑡), 𝑣(𝑡)) is a curve in 

𝑆, with 𝛼(0) = 𝑝, then

d𝑁𝑝(𝛼′(0)) = 𝑁𝑢𝑢′(0) + 𝑁𝑣𝑣′(0). (62)

where 𝑁𝑢 =d𝑁𝑝(𝒙𝑢) for 𝑢 line, and 𝑁𝑣 =d𝑁𝑝(𝒙𝑣) for 𝑣 line. So we only need to show that ⟨ d𝑁𝑝(𝒙𝑢), 𝒙𝑣⟩ = ⟨𝒙𝑢, d𝑁𝑝(𝒙𝑣)⟩.

Notice that ⟨𝑁, 𝒙𝑢⟩ = 0, so taking its derivatives w.r.t 𝑣 gives

⟨𝑁𝑣, 𝒙𝑢⟩ + ⟨𝑁,𝒙𝑢𝑣⟩ = 0. (63)

taking derivatives of ⟨𝑁, 𝒙𝑣⟩ = 0 w.r.t 𝑢 gives ⟨𝑁𝑢, 𝒙𝑣⟩ + ⟨𝑁,𝒙𝑣𝑢⟩ = 0.

And we are done.

∎

Given the above fact, we could associate to d𝑁𝑝 a quadratic form 𝑄 in 𝑇𝑝(𝑆), namely 𝑄(𝑣) =
⟨ d𝑁𝑝(𝑣), 𝑣⟩ (according to bilinear form 𝐵(𝑣,𝑤) = ⟨ d𝑁𝑝(𝑣), 𝑤⟩ and 𝑄(𝑣) = 𝐵(𝑣, 𝑣)).

Definition(Second fundamental form). The quadratic form 𝕀𝑝, defined in 𝑇𝑝(𝑆) by

𝕀𝑝(𝑣) = −⟨ d𝑁𝑝(𝑣), 𝑣⟩ (64)
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is called the second fundamental form of 𝑆 at 𝑝.

We give a geometric interpretation of the above second fundamental form using the normal curvature.

Definition(Definition of Normal curvature). Let 𝐶 be a regular curve in 𝑆 passing through 𝑝 ∈ 𝑆, 𝜅 the curvature 

of 𝐶 at 𝑝, with cos 𝜃 = ⟨𝑛,𝑁⟩ where 𝑛 is the normal vector to 𝐶 and 𝑁  is the normal vector to 𝑆 at 𝑝. Then the 

number 𝜅𝑛 = 𝜅cos 𝜃 is called the normal curvature of 𝐶 ⊂ 𝑆 at 𝑝.

Theorem(Meusnier: geometric interpretation of the second fundamental form). All curves lying on 𝑆 and 

having at a given point 𝑝 ∈ 𝑆 the same tangent vector share the same normal curvature.

The above proposition allows us to speak of the normal curvature along a given direction at 𝑝.



Thank You For Listening!
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