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c p Curves

1. Parametrized curves
Definition(Definition of differentiable curve). A parametrized differentiable curve is an infinitely differentiable
map o : I — R3 of an open interval into R3.

The variable ¢ is called the parameter of the curve. We do not exclude a = —oo and b = ~c.

The vector
o' (t) = (2 (1), y (1), #'(t)) € R® (1)
is called the tangent vector of the curve « at ¢.

For the study of the differential geometry of a curve, it 1s essential to assume that there exists such a
tangent line at every point.

Definition(Singular point, regular curve). (i) A point ¢ € [ is called a singular point of «, if o’ (t) = 0.
(ii) A parametrized differentiable curve o : I — R3 is said to be regular if o/ (t) # 0 forall t € I.

A parameter called arc length is usually useful in further analysis.
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Definition(Definition of Arc length). Given ¢, € I, the arc length of a regular parametrized curve o : [ — R?
from the point ¢, is defined by

s = / o ()] dr, (2)
{

to}

where |o/ (t)| = /2’ (¢ )2 + 2/ (1)2.

Since |a’(t)| > 0 for regular curve.

Now we talk about some invariance under reparametrization.

2. Vector product on E?

Definition(Equivalence: orientation). Suppose {e,, },{f,, } are two basis of n-dimensional space. They are said to
have the same orientation, denoted by e ~ f, if the matrix of change of basis has positive determinant.

Easy to show that orientation satisfies the equivalent relationship.

The vector product of u and v (in that order) is the unique vector u x v € R3 such that

(u x v) - w = det(u,v,w), Yw e R3. (3)
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Easy to show that (u X v) -u = 0and (u X v) - v =0, so u X v # 0 is orthogonal to a plane generated
by u and v. To give a geometric interpretation of its norm and its direction, we proceed as follows.

Theorem(Deduction). (i) Observe that (u x v) - (u X v) = |u X v|? > 0, so the determinant of (u,v,u X v) is
positive and it could be a basis.

(i1) Prove that

(wxv) - (wxy) = (4)
where u, v, x, y are arbitrary vectors. Check for basis.
and show that
lu x v]? = |ul?|v|*(1 — cos? §) = A2 (5)
(i11) The vector product is not associative. Because
(uxv)xw=(u-w)v— (v wuy, (6)

and check for all basis.
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3. The local theory of curves

3.1. Curvature

Let s be the arc length, and « be parametrized by s. o’ (s) has unit length, and |a” (s)| measures how
rapid the curve pulls away from the tangent line o’ (s), in the neighborhood of s.

Definition(Curvature of a curve). Let « : I — [E3 be a curve parametrized be arc length s € I. The number x(s) :=
|a” (s)] is called the curvature of « at s.

Easy to show that for straight line, & = us + v, if and only if x(s) = 0. If we have k(s) # 0 unless for
s = sy, we could still find its curvature by leveraging the limit. If for its neighborhood, x(s) = 0, then
it 1s a straight line.

When change the direction, we have tangent vector changes but the curvature does not. This is because,
let B(s) = a(—s), then

48(s) _ da(=s) _
ds  ds = (=1) d(—s) (7)
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If k(s) # 0, then we have a unit normal vector n well defined by a”(s) = k(s)n(s). The plane
composed by t and n are called the osculating plane at s.

Example. For x(s) = 0, check the following example.

(t 0 e_tl) t>0
a(t) = 4 (0,0,0),  t=0 (8)
(t,e—t%,o),t<o.

\

To proceed with the local analysis of curves, we assume o (s) # 0 (the singular point of order 1, and
a’(s) = 0 is called the singular point of order 0).

For a plane curve, we have the following description.

Example. Assume that o(I) C E? and give  a sign as in the text.

Transport the vectors #(s) parallel to themselves in such a way that the origins of ¢(s) agree with the origin of E?; the
end points of ¢(s) then describe a parametrized curve s — t(s) called the indicatrix of tangents of a.

Let 0(s) be the angle from e, to t(s) in the orientation of [E2. notice that we are assuming that x # 0. Show that
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(a) The indicatrix of tangents is a regular parametrized curve.
(b) dt/ds = (df/ ds)n, thatis, Kk =d6/ ds.

Proof: (a) Easy to see since |t'(s)| = |k(s)| # 0.

(b) Let
t(s) = [cos O(s), sin O(s)], 9)
then
t'(s) = [—sin6(s), cos 0(s)]0 (s) = 6’ (s)n, (10)
since we have n = jt (rotation by ).
|

3.2. Tortion

Already we have ¢’ = kn. Now we do not check n’, but check b(s) := t(s) x n(s), which is called
binormal vector at s, also a unit vector representing the osculating plane. |b’(s)| meausres the rate of
change of the neighboring osculating plane. We claim that b’ (s) is parallel with n(s). Indeed,

b=t xn+txn =txn’ (11)
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The focus isnot n’, but ¢ L b". With " L b, we have the result.

Extract the number out and define b’ (s) = 7(s)n(s) to be the following concept.

Definition(Definition of tortion). Let o : I — E3 be a curve parametrized be arc length s € I such that a”(s) # 0.
The number 7(s) := |b’(s)| is called the tortion of « at s.

Also, « is a plane curve, if and only if |6’ (s)| = 0. Necessarily speaking, it is easy. On the other hand,
we shall show that b(s) := b, take a inner product a(s) - b, and check it is also a constant, which is
exactly the parametrized form of plane.

Tortion could be either positive or negative.

3.3. Frenet trihedron

We have associated three orthonomal unit vector £(s), n(s), b(s), which is referred to as the Frenet
trihedron at s. And we already known that ¢’ = kn, and b’ = 7n, forn = b X t we

n =b xt+bxt =—1b—kt. (12)

We call the above three equations the Frenet formulas.



P
c » Curves R\ 78
Nt

Now we give the core theorem of this chapter.

Theorem(Fundamental theorem of the local theory of curves). Given differentiable functions «(s) > 0 and 7(s),
s € I, there exsits a regular parametrized curve « : I — E3 such that s is the arc length, (s) is the curvature, and
7(s) is the tortion of a.

Moreover, any other curve a, which satisfies the same condition, differs from « by a rigid motion. That is, there
exists a orthonormal map p with positive determinant, and a translation vector ¢, such that o = p o a + c.

Proof: Proof for uniqueness. (Details omitted)

Proof for existence. This is by ODEs theory.

For plane curve, we could have a simpler version of the above theorem.

Example. Given a function x(s), show that the parametrized plane curve have « as curvature is given by

a(s) = (/ cosf(s)ds + a,/sin 0(s)ds + b) (13)



3.4. Calculations

For general regular parametrized curve a(t), we have the following formula for calculating the
geometric variables.

Theorem(Calculations of curvature). (1) generally speaking, we have

_ /() x a"(1)]

K(t) = , (14)
o’ ()]
(ii) for plane curve o (t) = [z(t), y(t)], we have signed curvature
x/yll - y/a;//
k(t) = P (15)
272 +y2 )2
Theorem(Calculation of tortion). Generally speaking, we have
d t / t V4 t V4 t

o () x o (t)[?



=
4. The local canonical form
Let o : I — E3 be a curve parametrized by arc length without singular points of order 1. We now
consider the equations in a neighborhood of s, using the trihedron ¢(s,), n(sy), b(s) as a basis for E3.
We may assume without loss of generality, that s, = 0, and consider Taylor expansion
1 1
a(s) —a(0) =a’(0)s + 5&”(0)32 + 60/”(0)33 + R(s), (17)

where ]:i(f) —0as s — 0.Using o’ (0) = ¢, a”(0) = kn, and a” (0) = (kn)’ = K'n — k%t — kTb, we

rewrite the above equation sorted by ¢, n, b

1 1 1 1
a(s) —a(0) = (s — 8/12s3>t + (514382 — 6&:’33)72 — 6&7‘5319 + R(s), (18)

with
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S y(s) = sks? — tK's® + R, (19)
z(s) = —%RTS?’ + R,

which 1s called the local canonical form of a.

5. Classical form of curves

Example. Given the parametrized curve
S s\ .S
— e inl Z1.p2 20
a(s) (acos(c),a&n(C), c) (20)

(a) s is the arc length. (i.e. |a’(s)| = 1).
(b)

where ¢2 = a2 + b2. Show that

k(s) ==, 7(s)=—. (21)
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Example. A curve « is called a helix if the tangent line of o make a constant angle with a fixed direction. Assume
7(s) # 0, s € I, show the following statements are equivalent:

(1) a 1s a helix,
(ii) k/T = const.
(iii) the lines containing n(s) and passing «/(s) are parallel to a fixed plane.

(iv) the lines containing b(s) and passing a(s) make a constant angle with a fixed direction.
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1. Regular surfaces
Before stepping into the definition of regular curves, we have to define a differential of a map.

Definition(Definition of a differential of a map). Let F' : U C E™ — E™ be a differentiable map, i.e. each
component function has continuous partial derivatives w.r.t each variable. p € U. A linear map dF, : E" — E™ is
called the differential of F' at p, and is defined as follows.

dFp(w)

]

F(p)

Foa=8




i!

%
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Letw € E™ and a : (—¢,+¢) — U is a differentiable curve such that «(0) = p, @’(0) = w. Then by chain rule, 8 =
Foa: (—e,+¢€) — E™ is also differentiable. Then
dF;O(w) = f4'(0) (22)

Theorem(Differential of a map is independent of choice of curves). The above definition of d £, does not depend
on the choice of the curve which passes through p with tangent vector w.

Proof: We prove the case whenn = 2, m = 3. Let a(t) = (u(t),v(t))?, and F(u, v) = (z(u,v),y(u,v), z(u,v))T, then

ox

ou
oy
ou
Oz

ou

p'(0)

which is a linear map.

Actually the above map has a matrix in canonical bases, which is usually called the Jacobian matrix.

Oz
? du
o _
oo || 80 | = dFpw)- (23)
9z ot
ov
[ |

Definition(definition of regular surfaces). A subset S C E3 is a regular surface if for each p € S, there exists a
neighborhood V in E3 andamap « : U — V N S of an open set U € E2 onto V N S C E3 such that
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(1) « 1s differentiable, i.e.

z(u,v) = (z(u,v),y(u,v),2(v,v)), (u,v) €U (24)
whose component functions have continuous partial derivatives of all orders in U.
(i1) & 1s a homeomorphism.

(iii) regularity condition. For each ¢ € U, the differential dz,, : E* — E? is one-to-one.

Condition (1) is necessary if we want to do some geometric analysis on S. The homeomorphism in
Condition (11) prevents the self-intersections in regular surfaces, otherwise it would induce ambiguous
tangent plane at the intersection point. Condition (ii1) guarantee the existence of a tangent plane at all
points of S. A more familiar form of condition (ii1) is given as follows.

Theorem(Interpretation of condition (iii)). Let us compute the matrix of the linear map da, in the canonical bases
e1, €5 of R? with coordinate (u, v) and f;, f5, f3 of R? with coordinate (z, y, 2).

Let ¢ = (ug, v ), then e; = (1,0) is tangent to the curve u — (u, vy) on R? whose image is u >
(x(u,vy),y(u,vy), 2(u,vy)) (This image curve is called the coordinate curve v = v, or with ODE dv = 0), which
lies on S and has a tangent vector at x,
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dx  (9z dy Oz T_d (e
ou  \Ou’ du’ du — @\

Similarly, we have

b _ (00 0y 0\ _
ov  \ow ow dv) Tq\€2)-

So we could write the matrix of dx q

condition (ii1) requires the matrix to be full rank. Equivalently speaking, we nee
of order 2 of the matrix of do " that 1s, one of the Jacobian determinants

O(z,y) 09y,z) Iz, 2
I(u,v)” 9O(u,v)’ O(u,v)

(26)

(27)

d g—ﬁ X g—f # 0; or one of the minors

(28)
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does not vanish at q.

Condition (iii) is also of great importance for ! to be a so-called differentiable function, that is, if we
lift its range to three dimension, then the map is differentiable. Details could be found in Change of
parameters.

Actually, it would be tiresome if we test all the three conditions one by one. The following theorems
gives a cheaper method to the testing by utilizing the image of a multi-variable function.

1.1. Images
Theorem(images implies regularity). If f : U — E € C1(U) where U C [E? is an open set, then the graph of f,
viewed in [E3, i.e. the subset of E3 given by (z,y, f(z,y)) for (z,y) € U is a regular surface.

Proof: Easy to show that condition (1) and (ii1) are satisfied by taking derivatives and showing that ggzz; = 1. As for condition (i1),

we only need to show that ! is continuous, which is obvious if we check it as a projection from E2 onto E2.

Now we give some definitions about the following application.
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Definition(regular point, critical point). Given a differentiable map F' : U C E™ — E™ where U is open, a point

p € U is called a critical point of F if the differential dF, : E™ — E™ is not a surjective mapping.

The image F'(p) € E™ of a critical point is called the critical value of F'. A non-critical value of E™ is called the
regular value of F'.

The above terminology is inspired by a real-valued function of a real variable.

Example. Now particularly we consider f : U C E3 — E, which takes m = 1,n = 3. With a similar logic as we
have in Interpretation of condition (ii1), for canonical bases f;, f,, f3, we have the matrix form

df, = (for fys 12)- (29)
In this case, d f, is not surjective at p, iff f, = f, = f, =0 atp.
From the above multi-variable function, we could find a regular surface.

Theorem(regular surfaces by images). If f : U C E3 — E is a differentiable function and a € f(U) is a regular
value of f, then f~!(a) is a regular surface in E3.

Actually, this is a trick that we choose a plane in IE3 to find a regular surface. The image of f corresponds to a image
of another function A which could give an arbitrary regular surface.
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Proof: Letp = (xy, ¥, 29) be a point of f~1(a). Since a is a regular value of f, we may assume without loss of generality that
f. # 0 at p. Then define a map like an image

F(z,y,2) = (2,9, f(z,y,2))" (30)

and we indicate by (u, v, t) the coordinates of a point in E3 where F' takes its values. The matrix of the differential map dF, is given
by

1 00
dFEE =10 1 0

b (31)
.f:z: fy fz

as we illustrated in special case for function on E3. Whence det(dFp) = f, # 0. We may apply the inverse function theorem, which
guarantees the existence of neighborhood V' of p and W of F(p) such that F' : V' — W is invertible, and the inverse F~1 : W — V
is differentiable. It follows that

rx=u, y=v, z=g(u,vt), (u,vt)eW (32)

are differentiable. In particular, z = g(u,v,t = a) = h(z, y) is differentiable defined in the projection of V' onto zy plane. To use the
previous proposition, we only have to show that A is differentiable.

S
DS
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Since
F(f ' (a)nV)={(u,v,t):t=a}nNW (33)

we conclude that the graph of h (i.e. z) is f~1(a) N V. By images implies regularity, we have f~!(a) N V is a coordinate
neighborhood of p. Therefore, every point p € f~!(a) can be covered by a coordinate neighborhood and f~!(a) is a regular surface.
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It would be good if readers could recall the implicit function theorem and its application — inverse

function theorem.

The following proposition shows that any regular surface is locally the graph of a differentiable
function.

Theorem(Find differentiable function using projection). Let S C [E3 is a regular surface, and p € S. Then there
exists a neighborhood V' of p in .S such that V' is the graph of a differentiable function, which belongs to one of the
three forms z = f(z,y),y = g(x, 2),x = h(y, 2).

Proof: Using projection and by inverse function theorem. Without generality, we assume

0(z,y)
0. 34
9w, ) 7 (34)
We shall find an inverse function of 7 o &, denoted by (7 o ) ™! and compose it with z = z(u, v), we could have
z = z(u(z,y),v(z,y)) = f(z,y) (35)

which is also differentiable.



Using the above proposition, we claim that, for a regular surface, and any other parametrization @, we
do not need to test continuity of 1, provided that the other conditions hold.

Example. Example. Show that one-sheeted cone, with its vertex at the origin, i.e.

S ={(z,y,2) : 2 = z* + y* 2z > 0} (36)
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e UNN

is not a regular surface.
Proof: The problem is at the origin. By
z =+ + y? (37)

is not differentiable at (0, 0).

Theorem(omit the test of continuity of inverse map). Let p € S be a point of a regular surface S and x : U C
[E? — E3 is a parametrization with p € x(U) such that condition 1 and 3 of definition of regular surfaces hold.
Assume « is one-to-one, then =1 is continuous.

2. Change of parameters
Theorem(Differentiability of change of parameters). Let p be a point in a regular surface S C E3, and two
parametrizations ¢ : U C E? — E3 and y : V C E? — E3, parametrized by (u,v) and (£, ), respectively. Suppose
p € x(U) Ny(V) = W. Then the change of parameters h = x 1 oy : y 1 (W) — &~} (W) is a diffeomorphism.
Proof: Utilizing the map

F(u,v,t) = (z(u,v),y(u,v), 2(v,v) + ), (u,v) €U (38)



e » Surfaces i 71

e U

is a diffeomorphism by condition (iii). Restrict the map on a slice U x {0} and F~! is differentiable.

Check the following figure.

u
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The definition of differentiability could be extended to mappings between surfaces by utilizing the
differentiability of maps between plane parameters.

Definition(differentiability of maps between surfaces). A continuous map ¢ : V; C §; — S, of an open set V] of a
regular surface S, to a regular surface 5,, is said to be differentiable at p € 1/, if for given parametrization

x,:U CE?—= S, z,:U, CE*— S,, (39)
with p € ,(U;) and ¢(x,(U;)) C x5(U,), the map composition
{B51 °cpo wl . U]. — U2 (40)

is differentiable at ¢ = =71 (p).
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Two surfaces S; and S, are diffeomorphic, if there exists a differentiable map ¢ : S; — S, with a differentiable
inverse 1S, — S;. Such a map ¢ is called a diffecomorphism between S; and S,,.
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Example. Example. If x : U C E? — S is a parametrization, then ! : (U) — E? is differentiable. This means
every regular surface is locally diffeomorphic to a plane. This is useful in manifold learning.

Proof: Just check the differentiability of the map I o ! o g for any two given parametrizations.

Example. Example. Let S; and S, be regular surfaces. Assume that S$; C V C E3, V is an open set of E3. Suppose
¢ : V — E? is a differentiable map such that ¢(S;) C S,. Then the restriction Pl © 51 — 5y 1s a differentiable

1
map. The followings are some applications.

(i) Symmetry. S is a symmetric surface relative to zy plane. Then the differentiable map o : E3 — E3 defined by
o(z,y,2) = (x,y,—2) (41)
is differentiable restricted on S.

(ii) Rotations. S is a regular surface invariant by rotation R, 4, which denotes a rotation of angle ¢ about z axis.
Then the restriction

Rz,e . S — S (42)

1s differentiable.
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(iii) Stretching operation. Let ¢ : E3 — 3 is a stretching map given by

o(x,y,2) = (ax,by,cz), a,b,c#D0. (43)
Then ¢ : S? — ellipsoid
22 o2 2
{(:c,y,z)E]E3:§+b—2—|—c—2=1 (44)
is differentiable.
Proof:
u

Now we could define a regular curve using concept of maps.

Definition(definition of regular curve). A regular curve in E3 is a subset C' C E3 with the following properties.
For each p € C, there exists a neighborhood V' C E? of p and a differentiable map o : I C E — C NV such that the
differential de, is one-to-one for each t € I.

It 1s of the same logic to show that change of parameters of curves is given by a diffeomorphism.
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By change of parameters, we could find properties independent of parameters, that is, the geometric
properties.

3. The tangent plane

Note in the following, q is at the plane, p is on the regular surface in [E2, and w is a velocity vector of a
regular surface at p.

Theorem(Two ways of viewing tangent plane, definition of tangent plane is independent of parameters). Let
x : U C E? — S be a parametrization of a regular surface, ¢ € U is on the plane. The vector subspace of dimension
2,

de,(E?) C E? (45)
coincides with the set of tangent vectors to S at x,.

Proof: Let w be a tangent vector at x(q), i.e. w = &’ (0), where a : (—¢,+¢) — «(U) C S is differentiable and a(0) = x(q). By
differentiability of parametrization, we have the composition 3 = 71 o . : (—¢, +¢€) — U is differentiable. Take a differential, and
we have dz, (8’ (0)) = w, so w € dx(E?).



i
(
-€ 0
Ao
p'(0)
q
u
On the other hand, let w = dx(v), where v € [E2, which is the velocity vector of the curve 7 : (—e, +¢) — U given by
V() =tv+gq, te(—e, +e). (46)

by Definition of a differential of a map, we have dz,,,) = o/(0), witha =z o 7.
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From the above definition, the plane do q(IEz) which passes (q) = p, does not depend on the
parametrization z. This plane is called the tangent plane to S at p, denoted by T, (S).

Write its bases as follows

Ox Ox
= — = —, 47
Tu T 5w T By (47)
Then the parametrization of vector w € T, ) are determined by
/ (:1(m © /B> / /
w=a'(0) = — = z,,(q)u’(0) + x,, v (0). (48)

Theorem(Differential of a map between surfaces). Let S, .S, be two regular surfacesand p : V € S; — S, isa
differentiable map of an open set V' of S; into Sy. Given tangent vector w = o/(0) € T, ), let B : ¢ o a with
B(0) = »(p). Then 8’ (0) does not depend on the choice of a. The map dy,, : T),s,) — T,y () (S2) defined by
de, ) = B(0) is linear.

Proof: Take the partial derivatives and the proof is similar as we have in Differential of a map is independent of choice of curves.
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4. The first fundamental form

Definition(Definition of the first fundamental form of surfaces). The first fundamental form of the regular surface
S atpointp € S'is defined by I, : Tpgy = R

Lty = (w0, w) = [w]? > 0. (49)

For a parametrization of I, assume we have x(u, v), a : (—¢,+€) — S, with a(0) = p, with a’(0) = w, then
Ip(’w) = <’lU,’lU>

= (x u +x v, x 0 + x,0)
50
— |wu|2(u/)2 + L, - wvu/vl + |wv|2(vl>2 ( )

= B(u')? + 2Fu'v' + G(v')*
Now we could give some typical examples.

Example. Example. Calculate the first fundamental form of the regular surfaces.

(i) Plane. A plane that passes through p = (z, ¥y, 25) and contain w; = (aq, a,, as) and by = (by, by, b3), is given
by
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x(u,v) = p 4+ uwy + vw,.
where U = R?.
(ii) The eylinder over the circle 2 + y? = 1, is given by

x(u,v) = (cosu,sinu, v).
where U = {(u,v) : u € (0,27),v € R}.
(iii) Helicoid generated by a helix (cos u, sin u, au) given by

x(u,v) = (vcosu,vsinu, au)
where u € (0,27),v € R.
(iv) Sphere. A sphere given by
x(u,v) = (cosucos v, cosusin v, sin u)

where u € (0,27),v € (0, 7).

Practically speaking, if we know I, then we could calculate some geometric quantity.

(52)

(53)

(54)
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Theorem(calculations of geometric quantity on a regular surface). (i) arc length.

:/0t|o/(7)|d7
:/Ot o/ (7)]? dr (55)

(i1) vector angle.

cosf =

(o (to), B (to))
o (i3 )| (56)

(i11) Area. Let R € S be a bounded region of a regular surface contained in the coordinate neighborhood of the
parametrization « : U C E? — S. The positive number

A(R) := / |z, X x,|dudv, @Q =z '(R). (57)
Q
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1s called the area of R. In actual calculations, we have

@y x | =\ [P, 2 — |z, - 2, = VEG — F2. (58)
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Given a parametrization « : U C E? — S of a regular surface at a point p € S, we could choose a unit
normal vector at each point of x(U) by

T, X T,

N(p) = (p), pe=z). (59)

e,

Thus we have a differentiable map N : U C E? — R3. More generally, if V' € S is an open set in .S and
N : V — R3 is a differentiable map which associates to each p € V' a unit normal vector at p, we say
that IV 1s a differentiable field of unit normal vectors on V.

Not all surfaces admit a differentiable field of unit vectors defined on the whole surface. For instance,
the Mobius strip.

Definition(definition of Gauss map). Let S C E3 be a regular surface with an orientation N. The map N : S — R3
takes its values at the unit sphere

52 = {(w,y,2) 1?4y + 22 = 1) (60)

thus N : S — S? is called the Gauss map of S.



e » Gauss map

Gauss map is differentiable. The differential dV,, of N at p € .S is a linear map from 7}, g to

TN ) (.5?). Since the two are the same space, dN,, could be looked upon as a linear map on 7}, .

Example. Example. check the differential of NV of each surfaces.
(1) Plane. Norm vector is a constant, so dV,, = 0.
(i) Unit Sphere. Norm vector N = (z,y, z) and dN,(v) = v.

(iii) Cylinder, i.e. z? + y? = 1. Norm vector N = (z,y,0), and

_ [0,v=1(0,0,z)

Proof: Considering a curve in the surface.

The following is a fact about the differential of Gauss map.

Theorem(Self-adjoint map of the differential map of Gauss map). The differential dN,, : T),(S) — T}, (S) of the
Gauss map at point p € S is a self-adjoint linear map.
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Proof: We shall show that (AN, (w, ), wy) = (wy,dN,(w,)).

Now we assume x(u, v) be a parametrization of S at p, {x,,, z, } is the associated basis of T, g). If a(t) = x(u(t), v(t)) is a curve in
S, with a(0) = p, then

dN,(a’(0)) = N,u’(0) + N,v'(0). (62)
where N,, =dN,,, ) for u line, and N, =dN,,(z,,) for v line. So we only need to show that (dN,(z,), z,) = (z,, dN,(z,)).
Notice that (N, x,,) = 0, so taking its derivatives w.r.t v gives

(N,,xz,)+ (N,z,,) =0. (63)
taking derivatives of (N, x,) = 0 w.r.t u gives (N,,, x,) + (N, x,,) = 0.

And we are done.

Given the above fact, we could associate to dIV,, a quadratic form Q in T}, gy, namely Q(v) =
(AN, v) (according to bilinear form B(v, w) = (dN,, w) and Q(v) = B(v,v)).

Definition(Second fundamental form). The quadratic form I,, defined in T}, g by
]Ip(v> - _< de(’U)? ’U> (64)
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e » Gauss map

is called the second fundamental form of .S at p.
We give a geometric interpretation of the above second fundamental form using the normal curvature.

Definition(Definition of Normal curvature). Let C' be a regular curve in S passing through p € S, k the curvature
of C at p, with cos @ = (n, N) where n is the normal vector to C and N is the normal vector to S at p. Then the
number k,, = K cos 6 is called the normal curvature of C' C S at p.

Theorem(Meusnier: geometric interpretation of the second fundamental form). All curves lying on S and
having at a given point p € S the same tangent vector share the same normal curvature.

The above proposition allows us to speak of the normal curvature along a given direction at p.
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